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SUMMARY
The landscape ofN6-methyadenosine (m6A) on different RNA isoforms is still incompletely understood. Here,
in HEK293T cells, we endogenously label the methylated m6A sites on single Oxford Nanopore Technology
(ONT) direct RNA sequencing (DRS) reads by APOBEC1-YTH-induced C-to-Umutations 10–100 nt away, ob-
taining 1,020,237 5-mer single-read m6A signals. We then trained m6Aiso, a deep residual neural network
model that accurately identifies and quantifies m6A at single-read resolution. Analyzing m6Aiso-determined
m6A on single reads and isoforms uncovers distance-dependent linkages of m6A sites along single mole-
cules. It also uncovers specific methylation of identical m6A sites on intron-retained isoforms, partly due
to their differential distances to exon junctions and isoform-specific binding of TARBP2. Moreover, we find
that transcription factor SMAD3 promotes m6A deposition on its transcribed RNA isoforms during epithe-
lial-mesenchymal transition, resulting in isoform-specific regulation of m6A on isoforms with alternative
promoters. Our study underscores the effectiveness of m6Aiso in elucidating the intricate dynamics and
complexities of m6A across RNA isoforms.
INTRODUCTION

N6-methyadenosine (m6A) is a prevalent and dynamic modifica-

tion on mRNAs and diverse types of noncoding RNAs.1 It is

mainly catalyzed by the m6A methyltransferase METTL3 at the

DRACH (D = A, G or U; R = A or G; H = A, C, or U) motif on

RNAs.2 Recently developed methods, glyoxal and nitrite-medi-

ated deamination of unmethylated adenosine (GLORI)3 and

evolved TadA-assisted N6-methyladenosine sequencing

(eTAM-seq),4 have been proven to provide accurate identifica-

tion and absolute quantification of m6A at single-nucleotide res-

olution. Furthermore, more and more research emphasizes the

intricate association betweenm6A and the generation andmeta-

bolism of RNA isoforms.3,5,6 Especially, recent studies have re-

vealed that the exon-junction complex (EJC) plays an inhibitory

role in the deposition of m6A near splicing junctions.7–10 These
All rights are reserved, including those
findings strongly suggest the possibility of selective m6A deposi-

tion on different mRNA isoforms, even at the same locations.

However, due to the lack of methods to accurately identify

m6A on individual intact RNA molecules, the distribution of

m6A sites among various RNA isoforms remains unclear.

The direct RNA sequencing (DRS) technique developed by

Oxford Nanopore Technology (ONT)11 has been proven to be a

powerful strategy for deciphering the complexities of RNA iso-

forms. It captures the electric current changes for each contin-

uous five nucleotides on RNAs when they traverse the nanopore.

Although numerous machine learning models, such as

Epinano,12 epitranscriptional landscape inferring from glitches

of ONT signals (ELIGOS),13 nanom6A,14 NanoCompore,15

TandemMod,16 deeplearning explore nanopore m6A (DENA),17

and m6Anet,18 have been developed based on this technology

to identify m6A sites at single-nucleotide resolution, training a
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model to accurately identify m6A at single DRS reads is still of

great challenge due to the lack of high-quality m6A-modified

DRS signals on single molecules. Therefore, there is an urgent

need for comprehensive and unbiased labeling of m6A on indi-

vidual cellular RNA molecules to train a model with reliable sin-

gle-read accuracy. Here, through endogenously labeling the

m6A on single RNAs in live cells, we developed m6Aiso, which

accurately identifies m6A on single reads, and observed iso-

form-specific m6A methylation driven by multiple potential

mechanisms.

DESIGN

Deamination adjacent to RNA modification targets (DART-seq),

which was reported to induce C-to-U mutations adjacent to

m6A sites through the apolipoprotein B mRNA editing enzyme

catalytic subunit 1 (APOBEC1)-YT521-B homology domain

(YTH) fusion protein in live cells, was previously recognized as

a method for identifying m6A at single-nucleotide resolution,19

although its bias to certain 5-mers was also reported.20 While

the C-to-U mutations can endogenously label m6A on the

samemolecules, themutations beside them6A sitesmust distort

the signals of m6A-modified 5-mers, which constitute the small-

est unit for the ONT signal. In this study, we revealed that

APOBEC1-YTH is also capable of inducing clustered C-to-Umu-

tations away from the m6A sites without altering the 5-mers en-

compassing GLORI-identified m6A sites on the samemolecules.

Therefore, we reasoned that in the ONT DRS data of APOBEC1-

YTH-expressed cells, the signals of annotated m6A sites on sin-

gle reads without C-to-U mutations nearby but at reasonable

distances away were undistorted m6A signals on single reads,

based on which a deep-learning model could be trained to iden-

tify m6A on single DRS reads.

RESULTS

Determination of positive m6A signals on single DRS
reads through endogenous labeling
Although the C-to-U mutations of DART-seq can label the m6A

endogenously on the same molecules, the mutations beside

m6A sites must distort the signals of m6A-modified 5-mers,

which constitute the smallest unit for ONT signal. Upon reanalyz-

ing the C-to-U mutations reported by the original DART-seq pa-

per,19 we realized that although 36,835 (91.4%) C-to-U muta-

tions are immediately preceded by an A, only 16,223 (44.0%)

of which were within the DRACH m6A motif and 1,273 (7.8%)

were immediately preceded by GLORI-identified m6A sites in

HEK293T (Figure S1A). Nevertheless, 1,708 (7.1%) and 6,815

(28.3%) of the C-to-U mutations outside DRACH motifs were

located less than 10 and 10–100 nt away from the GLORI-iden-

tified m6A sites in the same cell line, respectively (Figure S1B),

suggesting that APOBEC1-YTH induces a significant fraction

of C-to-U mutations within 100 nt of m6A sites. Similar

results were observed in HEK293T cells transfected with the

copGFP-tagged APOBEC1-YTH fusion protein, which allows

for the enrichment of transfected cells by flow cytometry

(Figures S1C–S1F). In addition, the C-to-U mutations across

the 3 replicates showed high reproducibility (Pearson’s r of mu-
2 Molecular Cell 85, 1–14, March 20, 2025
tation rate > 0.95) (Figures S1G–S1I). Thus, these C-to-U muta-

tions away from m6A sites may be used to label the m6A without

interfering with the electric current of m6A-methylated 5-mers.

To efficiently label the m6A endogenously on single RNAs, we

performed ONT DRS deeply on the mRNAs of HEK293T cells

with efficient translation of copGFP-tagged APOBEC1-YTH

(5,503,279 reads) and copGFP-tagged empty vector

(4,932,654 reads). After filtering out the known SNPs as well as

the mutations that could be induced by APOBEC1 alone19 or

those mutations that occurred in the empty vector, we identified

384,096 C-to-U mutations from DRS long reads. These muta-

tions were distributed in a manner resembling the distribution

of m6A sites with an enrichment near-stop codons (Figure S2A),

although exhibiting a slight 30 bias, which is consistent with the

general bias observed in ONT reads.21 We found 166,507

(43.4%) of the C-to-U mutations, including those not within

m6A motifs, were clustered within 100 nt. Furthermore, the clus-

tered C-to-U mutations, rather than the non-clustered ones,

were enriched near the stop codons of mRNAs (Figures S2B

and S2C), suggesting that most of the non-clustered C-to-U mu-

tations are not induced by the binding of the YTH domain but

rather by the incidental contact of APOBEC1 with random RNAs.

Because theC-to-Umutations close to them6Asiteswill distort

the 5-mer signals of m6A, we did observe significantly different

current signals between m6A sites with C-to-U mutations occur-

ring within 10 nt and those 10–100 nt away (Figures S2D–S2F),

while the 5-mer motif compositions of them are similar, suggest-

ing the m6A sites with C-to-Umutations 10–100 nt away can well

represent the m6A sites in all contexts (Figure S2G). Thereby, we

proceeded todetermine theproper single-readm6Asignals at the

GLORI-identified m6A sites by requiring the presence of at least

one clustered C-to-Umutation 10–100 nt away, but nomutations

occurring less than 10 nt away from the m6A sites on the same

reads (Figure 1A). Assuming that the C-to-U mutations were

caused by methylation of the nearest m6A sites on the same

RNAs, we determined 2,275,985m6A signals on 1,210,818 single

DRS reads at 20,297 unique GLORI-identified m6A sites in

HEK293T.3Meanwhile, from thesameDRSdataset,wealso iden-

tified 18,630,201 single-read-level unmodified signals at the

DRACHmotifs located at least 20 nt away from anym6A sites an-

notated by m6A individual-nucleotide-resolution cross-linking

and immunoprecipitation (miCLIP),22 GLORI,3 m6A-selective allyl

chemical labeling and sequencing (m6A-SAC-seq),23 and m6A-

crosslinking-exonuclease-sequencing (m6ACE-seq),24 and

outside m6A peaks of m6A-seq25 in HEK293T cells.

Development of a deep-learning model to predict the
m6A methylation states on single reads
Based on the m6A-modified and -unmodified signals at single

reads, we aimed to develop a deep-learning model to predict

the methylation states of DRACH motifs on single reads. To

determine an optimized deep-learning model, we tried 1D-resid-

ual neural network (ResNet), 2D-ResNet, and self-attention to

train 12 deep-learning models with the input of local RNA se-

quences and their local electric current signal features of

5-mer, 7-mer, 9-mer, and 11-mer, respectively.

Because the correct m6A sites responsible for the C-to-U mu-

tations were sometimes ambiguous, especially when multiple



Figure 1. Endogenously labeling of m6A on single reads and assessment of m6Aiso at single-molecule level

(A) Flowcharts illustrating the classification of modified and unmodified native reads.

(B) Schematic illustrating a semi-supervised learning strategy for filtering out false positive signals. P:N, positive data: negative data; FP, false positive.

(C) The distribution of predicted modification probabilities using the m6Aiso model in the independent test dataset.

See also Figures S1–S4.
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GLORI-identified m6A sites were located near the mutations, we

recognized that there should be some false positive signals in the

positive training data. To address this issue, we employed a

semi-supervised learning strategy26 to train the deep-learning

models, respectively (Figure 1B). During this training process,

the initial models were trained using all the training data. We

then discarded the 5% samples with the lowest predicted m6A

probabilities from the positive dataset and updated the training

data to retrain the models, respectively. The updating and re-

training processes were iteratively repeated and terminated till

the false positive rate (FPR) < 0.05, which is about to converge

in the positive training data (Figure S2H). We then trained 12 final

models using the corresponding clean single-read m6A signals.

To evaluate the performance of these models, we used an inde-

pendent flow cell of ONT DRS reads obtained from HEK293T

cells infected with an empty vector. This test dataset comprises

all the 171,791 single-read signals at 3,265 GLORI3-determined,

extremely highly methylated (level > 0.95) m6A sites in HEK293T

cells as positive data as well as 858,955 unmodified single-read

signals as the negative data. Through comparing the perfor-

mances of the 12 final models, we found all models achieved

similar area under curves (AUCs) of receiver operating character-

istic (ROC) curves, ranging from 0.81 to 0.92 (Figures S3A, S3C,

and S3E); however, only the 2D-ResNet model using signals of a
7-mer sequence, which comprised three 5-mer sliding windows

from 1 nt upstream to 1 nt downstream of DRACH, exhibited an

outstanding AUC of precision-recall (PR) curves at 0.69, which

was significantly higher than the second-best at 0.36

(Figures S3B, S3D, and S3F). Moreover, the 7-mer 2D-ResNet

model achieved an even higher ROC AUC of 0.9 and a PR

AUC of 0.87 (Figures S3G and S3H) based on the synthetic in vi-

tro transcribed data.12 We then selected the 7-mer 2D-ResNet

model as our final model and named it as m6Aiso (Figure S3I).

As shown in Figure 1C, themodification probabilities determined

by m6Aiso were concentrated at the expected extremes in both

unmodified and modified reads in the test dataset (Figure 1C).

Based on m6Aiso, we ultimately preserved 1,020,237 (44.8%)

clean, single-read m6A-modified signals at 19,493 unique m6A

sites for final training. Although not a gold standard, we still found

that 63.0% of these clean signals were also supported by

m6Anet.18 To further evaluate the accuracy of single-read m6A

signals, we used a 7-mer motif, AGGACUU, as an example

due to its distinct 5-mer (GGACU) mean current signal between

m6A and A in this motif context (Figure S4A). As shown in Fig-

ure S4A, the distribution of the mean current signal of initial

training data (epoch = 0) resembles a merged distribution of

m6A and A; however, after removing the 5% of training data

with the lowest m6A probabilities in each epoch over 27 times,
Molecular Cell 85, 1–14, March 20, 2025 3
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the distribution of mean current signal in the final training data

(epoch = 26) closely resembles that of pure m6A signal, suggest-

ing the data cleaning process effectively eliminated false

positives in each epoch and resulted in clean training data. Addi-

tionally, the process continually reduced the proportion of sin-

gle-read signals derived from lowly methylated m6A sites and

those away from the C-to-U mutations (Figures S4B and S4C).

The 19,493 unique m6A sites that derived from the clean

positive single-read m6A signals showed similar compositions

of m6A motifs and distributions of m6A level with GLORI-iden-

tified m6A sites in HEK293T cells3 (Figures S4D and S4E), sug-

gesting it has the capacity of predicting all types of m6A sites.

Notably, 256,080 (25.1%) of these single-read signals origi-

nated from lowly methylated m6A sites (level < 0.25), which

were largely omitted in the training data of previous methods

(Figure S4F).

m6Aiso accurately detects and quantifies both highly
and lowly methylated m6A sites
Using m6Aiso, we then identified 23,146 m6A sites with strong

enrichment near-stop codons in HEK293T cells infected with

an empty vector (Figure 2A). These sites resembled the 5-mers

profile of GLORI-identified m6A sites (Figure 2B). Moreover, in

contrast to m6Anet,18 which primarily captures the m6A sites

with levels greater than 0.4, m6Aiso-identified m6A sites in

HEK293T cells displayed a ‘‘saddle-shaped’’ distribution of

modified levels, with 8,073 (34.9%) of them below 0.25, which

is highly consistent with GLORI (Figure 2C). Similar results

were observed using the published DRS data27,28 from six hu-

man cell lines (A549, K562, HCT116, HEK293T, HeLa, and

MCF7) (Figures S5A–S5C).

To further evaluate the accuracy of m6Aiso in identifying

m6A sites, we took advantage of the previously known m6A

sites in HEK293T cells identified by GLORI,3 miCLIP,22 m6A-

SAC-seq,23 and m6ACE-seq.24 We found that 17,941

(77.5%) of the m6Aiso-identified m6A sites could be validated

by at least one of the four experimental methods, while 5,205

(22.5%) sites were m6Aiso-specific (Figure 2D). In contrast to

the shared m6A sites, these m6Aiso-specific sites exhibited

very low m6A stoichiometry, with 73.0% of them having levels

below 0.25 (Figure S5D). Furthermore, when considering only

the 12,313 sites with modified levels greater than 0.4 to mimic

the level distribution of m6Anet-identified m6A sites, 86.2% of

m6Aiso-determined m6A sites were also detected by GLORI in

HEK293T, which was comparable with m6Anet but substan-

tially higher than DENA and nanom6A (Figure S5E). On the

other hand, although methylated lowly, these 5,205 m6Aiso-

specific sites still displayed a strong enrichment near the

stop codons (Figure S5F), and 2,866 (55.1%) were annotated

within the m6A-Atlas (v2.0) database.29 Even for the remaining

2,339 m6A sites, which had not been previously identified,

their motif distribution resembled the GLORI-determined

lowly methylated m6A sites (Figure S5G), and 6 of 10 repre-

sentative selected sites were still sensitive to depletion

or overexpression of m6A methyltransferase or to in vitro fat

mass and obesity-associated protein (FTO) treatment, as as-

sessed using single-base elongation-and ligation-based

qPCR amplification (SELECT) method30 (Figures S5H–S5K).
4 Molecular Cell 85, 1–14, March 20, 2025
We then tested the accuracy of m6Aiso in quantifying the m6A

levels by comparing its outputs with those measured by GLORI

in diverse human cell lines, including HEK293T, HeLa, and

A549, as well as mouse embryonic stem cells (mESCs). We

found a strong correlation between the m6A levels determined

by m6Aiso and those determined by GLORI in all of these cell

lines (Pearson’s r = 0.86–0.90, Figures 2E, 2F, S6A, and S6B),

with m6Aiso outperforming m6Anet, nanom6A, and DENA

(Figures S6C–S6E). Additionally, a strong correlation of the

measured m6A levels was also observed between m6Aiso and

eTAM-seq4 in HeLa (Pearson’s r = 0.85, Figure S6F) and

mESC cells (Pearson’s r = 0.86, Figure S6G), respectively.

Notably, m6A sites with levels below 0.25 were also highly

consistent with GLORI or eTAM-seq, suggesting m6Aiso has

sufficient power and accuracy to quantify the lowly methylated

m6A sites. When we classified the m6A sites by the 5-mers, we

found the correlation of m6A levels between m6Aiso and GLORI

in HEK293T cells was particularly robust for the commonmotifs

(Figure S7) and outperformed both m6Anet18 and mAFiA.31 We

further found that m6Aiso measurements of m6A levels in HeLa

cells were generally consistent with the six m6A sites measured

by locus-specific extension of annealed DNA probes targeting

m6A and sequencing (LEAD-m6A-seq)32 (Figure S6H). More-

over, we observed the m6A levels determined by m6Aiso were

correlated with the modeled m6A probability predicted by

iM6A33 in HEK293T, HeLa, A549, and mESCs, respectively

(Figures 2G and S6I–S6K). Notably, the m6Aiso-specific m6A

sites also displayed significantly lower iM6A scores than the

shared sites (Figure 2H).

We next evaluated the accuracy of m6Aiso by using the pre-

viously published ONT DRS data from METTL3-knockout (KO)

and wild-type (WT) in HEK293T cells27 and mESCs,34 respec-

tively. Firstly, we found a high consistency of m6Aiso-deter-

mined m6A levels (Pearson’s r = 0.98) between the two repli-

cates of WT HEK293T cells (Figure S8A). We then observed

robust downregulation of m6Aiso-determined m6A levels in

METTL3-KO for the vast majority of sites (Figures 2I and S8B).

Specifically, only 2.2% of the m6A sites with methylation

levels > 0.25 in WT were above the diagonal. Notably, we found

the m6A downregulation was more pronounced when deter-

mined bym6Aiso than bym6Anet (Figures S8C and S8D). More-

over, the majority of the m6Aiso-specific m6A sites and lowly

methylated m6A sites (level < 0.25) were also downregulated,

including those with levels < 0.1 (Figure S8E). Similar results

were also observed for Mettl3-KO in mESCs (Figures 2J, S8F,

and S8G). On the other hand, only 0.4% of the m6Aiso-deter-

mined downregulated (difference > 0.1) m6A sites upon

METTL3-KO in HEK293T were previously unknown m6A sites

(Figure S8H), while 88.2% of the sites sensitive to METTL3-

knockdown (KD) in GLORI3 (difference > 0.1) were also downre-

gulated (difference > 0.1) inMETTL3-KO based on m6Aiso (Fig-

ure S8I). Similar results were also observed in mESCs (Figures

S8J and S8K).

m6Aiso performs well in Arabidopsis thaliana

To further assess the generalizability of m6Aiso, we used it

to identify the m6A sites in three Arabidopsis thaliana sam-

ples: Col-0 (WT), VIRILIZER mutant (vir-1), and VIRILIZER



Figure 2. m6Aiso accurately detects and quantifies both highly and lowly methylated m6A sites

(A) Metagene profile illustrating the distribution of the modified sites captured by m6Aiso.

(B) Comparison of the percentages of modified sites determined by m6Aiso and by GLORI on the DRACH motifs.

(C) Density plot comparing the distributions of m6A methylation levels determined by GLORI, m6Aiso, and m6Anet.

(D) Percentages for m6A sites detected by different number of methods. ‘‘m6Aiso-high’’ denotes modified level > 0.4.

(E and F) Correlation of the m6A levels estimated by m6Aiso and GLORI in HEK293T cells infected with an empty vector (E) and mESCs (F), respectively. The m6A

levels of 0.1 and 0.25 are indicated by red lines.

(G) The m6A levels estimated by m6Aiso agreed with the modeled probability by iM6A in HEK293T cells.

(H) Comparison of iM6A scores between m6Aiso-specific sites and common sites.

(I) Scatterplot comparing the methylation levels in METTL3-KO HEK293T cells with WT cells.

(J) Scatterplot comparing the methylation levels of Mettl3-KO mESCs with WT mESCs.

For boxplots, p values were calculated by two-tailed Wilcoxon rank-sum test.

See also Figures S5–S8.
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complemented (VIRc).21 A total of 4,372, 1,877, and 5,152 m6A

sites were identified in Col-0, vir-1, and VIRc, respectively, with

enrichment in the 30 UTR in all samples (Figures S8L and S8M).

In contrast to mammals, the most frequently methylated
5-mers in Arabidopsis thaliana were AGACU, AGACA, and

AAACU (Figure S8N). 94.1% of the m6A sites in the Col-0 sample

were annotated by the RNA Epitranscriptome Collection (REPIC)

database35 (Figure S8O). As expected, compared with Col-0, the
Molecular Cell 85, 1–14, March 20, 2025 5



Figure 3. Linkage of m6A sites along the same RNA molecules

(A) Sankey diagram comparing the percentages of single reads, isoforms, and genes with different numbers of m6A sites.

(B) Line chart showing the percentages of m6A sites within various distances to adjacent m6A sites at the read, isoform, and gene levels.

(C) Boxplot showing the linkage (D0) of pairs of m6A sites with different distances on the genome.

(D) Boxplot comparing the distances of m6A sites with different D0 values to the exon junctions.

(E) Boxplot comparing the D0 for pairs of m6A sites with distance < 50 nt on RNAs but >5 kb on genes as compared with those with distance < 50 nt on both RNAs

and genes.

(F) Representative example of the coordinated occurrence of m6A sites in STIP1-201 transcript.

For boxplots, p values were calculated by two-tailed Wilcoxon rank-sum test.

See also Figure S9.
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m6Aiso measured m6A levels of the vast majority of sites were

remarkably decreased in both the vir-1 and VIRc samples

(Figures S8P and S8Q), indicating the reliability of m6Aiso in Ara-

bidopsis thaliana.

Genomic distance-dependent linkage ofm6A sites along
single molecules
It has been reported that a significant portion of m6A sites tend to

be clustered in short regions.3,22,23 However, it remains unclear

whether m6A sites are clustered on isoforms or single molecules.

Using m6Aiso, we identified 23,146 m6A sites on 12,019 RNA

isoforms of 6,010 genes in HEK293T cells transfected with an

empty vector. On average, there were 3.9 m6A sites per modified

gene, 2.3 m6A sites per expressed isoform of the modified gene,

and 0.5 m6A sites per read of the modified gene (Figures S9A–

S9C); of note, in contrast to the genes and isoforms, where
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73.8%and 44.9% contained at least twom6A sites, respectively,

only 10.6% of the DRS reads had at least two methylated m6A

sites (Figure 3A). Moreover, consistent with previous re-

ports,3,22,23 approximately 35% of m6A modifications were clus-

tered with adjacent m6A sites within 50 base pairs (bp), both on

the same genes and the same isoforms (Figure 3B). However,

only 19.3% of the m6A sites were clustered within 50 bp on the

same ONT reads (Figure 3B), suggesting that the m6A sites are

unlikely to be strongly linked on the same RNA molecules.

We then employed the parameter D0, a metric commonly used

to assess the linkage disequilibrium (LD) between two genetic

variants within a population,36 to test whether different m6A sites

on the same RNA isoforms tend to be linked on the same reads

or co-occur by chance. As shown in Figure 3C, we observed a

relatively weak but nonnegligible linkage between m6A sites

with genomic distances of less than 200 bp, but the linkage
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decreased gradually as the distances increased and became

less recognizable when the distances exceeded 1 kb, suggest-

ing that a single binding of methyltransferase on an RNA can

sometimes methylate multiple targets in a region. Moreover,

pairs of m6A sites with higher linkage tended to occur on the

same long exons of transcripts with fewer exon numbers

(Figures S9D–S9F). We found the pairs of highly linked m6A sites

had shorter genomic distances (Figure S9G) between each other

and longer exon-junction distances (EJDs) (Figure 3D), suggest-

ing that the inhibitory role of EJC on m6A sites near exon-exon

junctions likely disrupts their linkage with other m6A sites.

Gene Ontology (GO) enrichment analysis showed that genes

with highly linked m6A sites were enriched in RNA processing

and translation (Figure S9H). Consistent with the previous

report that m6A can be deposited co-transcriptionally on chro-

matin RNAs,37–39 we found that pairs of m6A sites with

distances < 50 bp on RNAs but > 5 kb on the genome had signif-

icantly smaller D0 values than pairs of sites with distances < 50 bp

on both RNAs and the genome (Figure 3E). As exemplified in Fig-

ure 3F, a subset of the 15 m6A sites on STIP1-201 isoform are

linked as a block with strong D0 for certain pairs of m6A sites.

Therefore, the m6A sites are partially linked along single RNA

molecules in a manner that depends on the distances on the

genome rather than on RNAs.

m6Aiso reveals differential methylation of identical m6A
sites on different isoforms due to EJC and TARBP2
To test whether m6Aiso can accurately quantify m6A on each

RNA isoform, we calculated the m6A levels of each isoform as

the mean level of all m6A sites. We found the average mutation

rates of APOBEC-YTH-induced C-to-U mutations on individual

isoforms had a significant positive correlation with the m6Aiso

other than m6Anet-determined m6A levels of isoforms in

HEK293T cells (Figures 4A and S10A). Moreover, the m6Aiso-

determined isoform m6A levels had a significant negative corre-

lation with the expression of isoforms (Figure S10B). In addition,

consistent with previous reports that EJCs suppress the m6A

deposition within 200 bp of exon boundaries,7–10 we also

observed lowly methylation of m6A within 200 bp of exon bound-

aries on the isoforms (Figure 4B).

We were then interested in whether the same m6A sites at

identical genomic locations can be methylated differentially

on different isoforms. By comparing the m6A levels of the

same m6A sites among different RNA isoforms, we determined

287 (unique, n = 147) and 222 (unique, n = 77) sites that were

methylated significantly higher and lower in specific isoforms

than the combination of other isoforms of the same genes (Fig-

ure 4C). As compared with the isoforms with isoform-specific

lowly methylated m6A sites, the isoforms with isoform-specific

highly methylated m6A sites were significantly enriched in those

isoforms with retained introns (p = 0.0034, Figure 4D). Further-

more, we observed the m6A sites on intron-retained isoforms

tended to be located farther away from the exon junctions

than in other transcripts (p = 5.4 3 10�30, Figure 4E). To test

whether the inhibitory role of EJC on m6A results in differential

methylation of m6A sites on the alternatively spliced isoforms,

we determined the m6A sites with alternative EJDs on different

isoforms. Compared with the levels of these sites on isoforms
with EJD < 100 bp, we found 33 and 7 unique m6A sites were

methylated higher and lower on isoforms with EJD > 200 bp,

respectively (Figure 4F). These results suggest the inhibitory

role of EJC can account for at least a part of isoform-specific

m6A methylation. As exemplified in Figures 4G and 4H, an

m6A site in methyl-CpG binding domain protein 1 (MBD1) was

methylated higher on the isoform with a retained intron

(MBD1–224) than the other isoform with the intron spliced

(MBD1–201) based on m6Aiso. Using the SELECT method,30

we then found that specifically knockdown MBD1–224 using

the small interfering RNA (siRNA) targeting the retained intron

could significantly downregulate the m6A level at this site in

MBD1, suggesting MBD1–224 is methylated higher than

MBD1–201 at this m6A site (Figures 4I and S10C). Similar results

were also observed on the isoforms of the SMUG1, C11orf24,

and WRAP73 genes (Figures 4H, 4J, and S10D–S10G).

Besides EJC, TARBP2 subunit of RISC loading complex

(TARBP2), which binds the intron regions of preRNAs, can recruit

the methyltransferase complex (MTC) and promote the m6A

deposition on the flanking exons to facilitate intron retention

and RNA decay.40 Interestingly, we found the levels of m6A sites

on the flanking exons of TARBP2-bound introns were signifi-

cantly higher than those not flanking TARBP2-bound introns

on intron-retained isoforms (Figure 4K), whereas it was not sig-

nificant on protein-coding isoforms (Figure S10H). Additionally,

the 53 m6A sites flanking the TARBP2-bound introns were also

significantly higher on intron-retained isoforms than the same

sites on protein-coding isoforms (Figure S10I). These results

suggest that isoform-specific m6A methylation may also result

from the specific binding of RNA-binding proteins on RNA

isoforms.

We further applied m6Aiso to A549 and MCF7, HCT116 cell

lines to investigate whether changes in m6A site levels were

associated with isoform expression. In A549 cells, we identified

283 and 70m6A sites that exhibited significantly higher and lower

methylation compared with MCF7 cells, respectively (Fig-

ure S10J), and only 6.1% and 6.0% of the significantly higher

and lower modified isoforms happened to occur on isoform

with changes of expression fractions, respectively (Figure S10K).

Similar results were also observed in comparisons between

A549 and HCT116 cells (Figures S10L and S10M), as well as be-

tween MCF7 and HCT116 (Figures S10N and S10O). These re-

sults suggest that the majority of cell-specific methylation of

m6A sites represents a different layer of RNA processing from

RNA splicing and expression.

m6Aiso reveals isoform-specific m6A changes during
epithelial-mesenchymal transition
Recent studies have unveiled the pivotal roles of m6A in epithe-

lial-mesenchymal transition (EMT),41–43 a process that is also

critically regulated by alternative RNA splicing.44 To investigate

whether m6A is dynamically regulated in an isoform-specific

manner, we performed ONT DRS to examine the m6A changes

on specific RNA isoforms in HeLa cells upon transforming

growth factor b (TGF-b)-induced EMT. First of all, we confirmed

the EMT was successfully induced through western blot

and RNA sequencing (RNA-seq)-based expression analysis

(Figures S11A–S11C). Through identification of the modified
Molecular Cell 85, 1–14, March 20, 2025 7



Figure 4. m6Aiso-identified m6A sites on different isoforms of the same genes

(A) Correlation of isoform m6A levels determined by m6Aiso and APOBEC1-YTH-induced C-to-U mutations.

(B) Violin plot depicting the correlation between methylation levels of m6A sites and their proximity to the exon junctions.

(C) Volcano plot depicting the differential methylation of single-nucleotide m6A sites on specific isoforms as compared with the m6A level of the identical sites on

the combination of all other isoforms in the same genes.

(D) Bar plot depicting the number of retained-intron transcripts associated with isoform-specific, lowly methylated, and highly methylated m6A sites. p value was

calculated by one-tailed Fisher’s exact test.

(E) Plot comparing the cumulative fractions of EJDs for identical m6A sites on retained-intron isoforms and their corresponding protein-coding isoforms.

(F) Volcano plot showing the differential methylation at identical m6A sites on different isoforms with EJDs > 200 nt and <100 nt.

(G) Bar plot illustrating the differential m6A methylation levels at identical m6A sites on two isoforms of MBD1. p value was calculated by two-tailed t test. n = 3.

(H) Structures of two isoforms of MBD1 and two isoforms of SMUG1. Red lines indicate the locations of m6A sites.

(I) SELECT assay showing m6A level changes at the site on MBD1 with siRNA targeting the retained intron. p value was calculated by two-tailed t test. n = 3.

(J) Bar plot illustrating the differential m6A methylation levels at identical m6A sites on two isoforms of SMUG1. n = 3.

(K) Comparison of the levels of m6A sites between on the flanking exons of TARBP2-bound introns and those not flanking TARBP2-bound introns on intron-

retained isoforms.

For boxplots and volcano plots, p values were calculated by a two-tailed Wilcoxon test.

See also Figure S10 and Table S1.
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Figure 5. Dynamical regulation of m6A in an isoform-specific manner during TGF-b-induced EMT

(A) Venn diagram comparing the number of m6A sites detected by m6Aiso in control and TGF-b-induced cells.

(B) Metagene profiles depicting the distributions of m6A sites in control and TGF-b-induced cells.

(C) Boxplot comparing the m6A levels between control and TGF-b-induced cells.

(D) Scatterplot depicting the differential m6A sites on isoforms between control and TGF-b-induced cells.

(E) Heatmap showing the methylation levels of differentially methylated m6A sites between control and TGF-b-induced cells.

(F) GO enrichment for the isoforms with upregulated m6A sites.

(G) Venn diagram comparing the upregulated m6A sites at the gene and isoform levels.

(H) Boxplot comparing the expression proportions of specific isoforms out of all isoforms of the same genes for the isoforms with upregulated m6A sites at both

the isoform and gene levels with the isoforms with upregulated m6A sites at the isoform level but not the gene level.

(I) Heatmap comparing the changes of methylation levels of identical m6A sites on two different isoforms upon TGF-b induction. Isoform 1 denotes the isoforms

with differentially methylated m6A sites, while isoform 2 denotes the randomly selected other isoforms originated from the same genes as isoform 1.

(J) Representative example of m6A sites inBCOR that exhibit changes to different directions on their two distinct isoforms during TGF-b induction. Red lines in the

structures of two isoforms of BCOR indicate the locations of m6A sites. n = 3.

For boxplots, p values were calculated by two-tailed Wilcoxon rank-sum test.

See also Figure S11.
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adenosines on individual single DRS reads using m6Aiso, we

identified 16,828 and 15,993 unique m6A sites in the control

and TGF-b samples, respectively (Figure 5A). The m6A levels

were highly consistent across the three replicates in both condi-

tions (Figures S11D–S11I). These m6A sites were strongly en-

riched near-stop codons, with 83.4% of the sites overlapping

between control and TGF-b samples (Figures 5A and 5B).

Furthermore, we observed a significant global increase of m6A

levels in TGF-b samples (p = 3.8 3 10�8, Figure 5C), as

confirmed by the results of m6A-seq (Figure S11J). Consistently,

we determined 450 upregulated m6A sites on 430 unique RNA

isoforms and 105 downregulatedm6A sites on 103RNA isoforms

upon TGF-b induction of EMT (Figures 5D and 5E). The genes

with upregulated m6A on isoforms were significantly enriched

in EMT-related pathways, such as the ‘‘TGF-b signaling

pathway’’ and ‘‘regulation of Wnt signaling pathway’’ (Figure 5F).

To test whether the m6A changes in EMT are isoform-specific,

we compared the differential m6A sites determined at gene and

isoform levels. Of note, 318 (70.7%) of the 450 upregulated sites

on isoforms were overlooked at the gene level comparison (Fig-

ure 5G). In contrast to the shared differential m6A sites at both

gene and isoform levels, the differentially methylated sites exclu-

sively determined at isoform level were strongly enriched in

those minor isoforms that expressed lower than the major iso-

forms of the same genes, suggesting the isoform-basedm6A an-

alyses are critical in deciphering the dynamics of m6A on minor

isoforms (Figure 5H). Similarly, 89 (84.8%) of the 105 downregu-

lated sites on isoforms were also overlooked at the gene level

(Figure S11K). For the m6A sites that were only differentially

methylated on certain RNA isoforms other than genes, we found

the randomly selected RNA isoforms of the same genes did not

show significant m6A changes at the same m6A sites (Figure 5I),

suggesting that these m6A sites are differentially methylated

upon TGF-b induction in an isoform-specific manner. For

example, the m6A sites in the BCL6 corepressor (BCOR), which

are critical for tumor suppression,45 remained unchanged in the

isoform BCOR-202 but were upregulated in the isoform BCOR-

210 (Figure 5J). These findings suggest isoform-specific dy-

namic changes of m6A during EMT.

SMAD3 selectively promotes m6A deposition on
isoforms with alternative promoters
A previous study has reported that upon stimulation with TGF-b

signaling in hESCs, the transcription factors SMAD2/3 undergo

phosphorylation and recruit m6A MTC to facilitate m6A methyl-

ation.46 Indeed, we found the promoter regions of the isoforms

with upregulated m6A were significantly enriched in the motifs

of SMAD family member 3 (SMAD3) (Figure 6A). We further found

SMAD3 could interact with METTL3, METTL14, and WT1-asso-

ciated protein (WTAP) in an RNA-independent manner (Fig-

ure 6B). Consistently, m6Aiso revealed that the isoformswith up-

regulated m6A tend to have increased expression (Figure S11L).

These results suggest that TGF-b treatment can promotem6A on

the RNA isoforms transcribed by SMAD3, which is activated

upon TGF-b treatment.

Of note, we found both the isoforms with upregulated and

downregulated m6A sites were significantly enriched in isoforms

with alternative promoters (Figures 5J, 6C, and 6D). By
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comparing with the reference isoforms of the same genes, we

found the promoters of the isoforms with upregulated m6A sites

were enriched in the motif of SMAD3 (Figure 6E). Interestingly,

the upregulated m6A sites on the isoforms with alternative pro-

moters weremostly located in the 30 UTRs and near-stop codons

(Figures 6F and S11M), which is consistent with the previous

report that SMAD3 promoted m6A peaks upon stimulation with

TGF-b signaling in hESCs that are near-stop codons.46,47 These

results suggest that transcription factor can selectively promote

the m6A on isoforms using specific promoters, resulting in iso-

form-specific regulation of m6A upon stimulations and isoform-

specific m6A even at the same m6A sites. On the other hand,

since the short-read-based m6A detection methods, such as

GLORI, can only measure the differential m6A sites located in

the common 30 UTRs without knowing the specific 50 region of

each isoform, this discovery further highlights the necessity of

using long-read sequencing in studying the dynamics of m6A.

DISCUSSION

Endogenous labeling is critical for training models at
single-read resolution
We foundm6Aiso exhibited a reliable ability to detect m6A at sin-

gle-read resolution, even for the lowly methylatedm6A sites. This

capability is largely attributed to the abundance of m6A signals

on single reads, which provides a comprehensive representation

of endogenous m6A sites and their stoichiometries. Although

APOBEC1-YTH induces C-to-U mutations that are biased to

certain 5-mers,20 our clean training data have very similar

5-mer compositions and level distribution with GLORI (Figures

S4D and S4E), and this is mostly due to the usage of mutations

within �100 nt regions to indicate the methylation status of

GLORI-determined m6A sites. On the other hand, a critical

step in the development of m6Aiso is cleaning up the initial pos-

itive single-read m6A signals using a semi-supervised learning

strategy.26 The success of data cleaning process suggests

that the initial training using the initial training set with false pos-

itives is still able to capture the correct features, at least for the

unmethylated signals. By mimicking the initial training data

with different portions of false positives using all the single-

read signals from the m6A sites with different ranges of GLORI-

determined m6A levels in control HEK293T cells, we found the

training with data cleaning process had sufficient power to

generate well-performed models, provided that the positive

training data have more than 40% true positive signals

(Figures S4G–S4I), while the true positive rate of the initial posi-

tive training data was 50.2% as estimated by the final m6Aiso

model. In this situation, since the FPRs of endogenous labeling

generated initial training set were similar for the m6A sites with

different levels, the lowly methylated m6A sites thus can also

be well-trained.

Diverse mechanisms are responsible for the isoform-
specific m6A methylation
In this study, we revealed the existence of isoform-specific m6A

modifications and dynamic changes even at identical m6A sites.

This finding highlights the advantages of using ONTDRS to iden-

tify the locations and dynamics of m6A. Previous studies have



Figure 6. SMAD3 selectively promotes m6A deposition on isoforms with alternative promoters

(A) Stack bar plot showing the percentage of isoforms with upregulated m6A sites that with and without SMAD3 motif in promoters.

(B) Interactions between SMAD3 and the m6A methyltransferase components.

(C) Diagram illustrating the definition of alternative promoter isoforms.

(D) Bar plot displaying the number of alternative promoter isoforms containing differentially methylated m6A sites during EMT.

(E) Comparison of the percentages of alternative promoter isoforms with SMAD3 motif in promoters between the alternative promoter isoforms with upregulated

m6A sites and all isoforms with m6A sites.

(F) Pie chart displaying the distribution of upregulated m6A sites within alternative promoter isoforms.

For bar plots, p values were calculated using one-tailed Fisher’s exact test.
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reported the inhibitory role of EJC on m6A deposition, as well as

correlations of m6A and exon length or exon number across

different genes.7–10,48 These findings convergently suggest

that alternative splicing can lead to alternative m6A deposition

on different isoforms. Besides, many studies have reported the

role of m6A in regulating alternative splicing,5,48–50 it may also

result in the preferred residence of m6A on specific isoforms.

On the other hand, previous studies have reported the wide-

spread existence of RNA-binding proteins that act as m6A trans

factors to mediate the cell-specific m6A methylation through re-

cruiting m6A MTC to the loci with the RBP binding.51 These trans

factors may bind to specific RNA isoforms and facilitate the m6A

deposition on them. Additionally, thesem6A trans factors include

several canonical RNA splicing factors, such as SRSF7,52

RBFOX2,53 and TARBP2.40 SRSF7 can interact and colocalize
with METTL3, METT14, and WTAP to facilitate the deposition

of m6A near its binding sites.52 It is possible that the splicing fac-

tors mediate the complex crosstalk between alternative splicing

and m6A modification. Similarly, transcription factors can also

promote the m6A deposition on their transcribed RNAs and

result in selective regulation of m6A on isoforms using different

promoters. Fortunately, we have provided a powerful tool

m6Aiso to decipher the detailed mechanisms that mediate the

isoform-specific m6A modification.

Limitations of the study
First, since ONT DRS is currently limited to sequencing the

poly(A)+ RNAs, the non-poly(A) RNAs, such as some long non-

coding RNAs (lncRNAs) and pre-mRNAs, cannot be measured

using m6Aiso. Second, as the signal differences between m6A
Molecular Cell 85, 1–14, March 20, 2025 11
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and A are not uniformly robust for all 5-mers, the performance of

m6Aiso for some 5-mers requires further improvement. Third,

predicting the non-DRACH m6A sites, such as the targets of

METTL16, remains challenging due to the limited availability of

training data.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Opti-MEM GIBCO Cat# 31985-062

Lipofectamine 3000 Thermo Fisher Scientific L3000015

E-cadherin Proteintech Cat# 20874-1-AP; RRID:AB_10697811

N-cadherin Proteintech Cat# 22018-1-AP; RRID:AB_2813891

GAPDH Proteintech Cat# 10494-1-AP; RRID:AB_2263076

High-glucose (4.5.g/L) DMEM medium Corning 10-013-CVRC

Fetal bovine serum Sigma-Aldrich F0193-500ML

Ham’s F-12K (Kaighn’s) medium Gibco 21127030

Opti-MEM Gibco 31985070

RIPA Buffer (103) Cell Signaling 9806S

PMSF Beyotime ST506

6 3 SDS sample buffer TransGen Biotech DL101-02

Tris-HCl pH=7.5 ThermoFisher 15567027

IGEPAL CA-630 Sigma-Aldrich I8896-50ml

NaCl Sigma-Aldrich S5150-1L

Glycerol Sigma-Aldrich G5516-100ML

0.5 M EDTA, PH 8.0 ThermoFisher AM9261

Protease inhibitor cocktail MedchemExpress HY-K0010

Phosphatase Inhibitor Cocktail II MedchemExpress HY-K0022

Protein A/G Magnetic Beads Vazyme PB101-01

DMSO Sigma-Aldrich D2650-100ml

Fragment buffer New England Biolabs E6150S

Glycogen Thermo Fisher Scientific AM9510

H3BO3 Sigma-Aldrich B0394

NaNO2 Sigma-Aldrich 31443

MES Sigma-Aldrich M3671

Glyoxal Sigma-Aldrich 50649

Triethylamine Sigma-Aldrich 471283

(NH4)2Fe(SO4)2,6H2O Sigma-Aldrich 09719

a-ketoglutarate Sigma-Aldrich K1128

L-ascorbic acid Sigma-Aldrich A5960

Sodium acetate solution Thermo Fisher Scientific R1181

Acetic acid Sigma-Aldrich 695092–500 mL

Deionized formamide Sigma-Aldrich 344206-M

Trypsin GIBCO 25200072

Blotting-Grade Blocker, nonfat dry milk Bio-RAD 1706404

RNase A Thermo Fisher Scientific EN0531

AMPure XP Beads Beckman Coulter A63881

MgCl2 Invitrogen AM9530G

RNasin Ribonuclease Inhibitors Promega N2615

Recombinant human FTO protein (Active) Abcam ab271525

Critical commercial assays

Ligation Sequencing Kit Oxford Nanopore Technologies Cat# SQK-LSK110

TruSeq Stranded mRNA Library Prep Kit Illumina Cat# 20020594

(Continued on next page)

Molecular Cell 85, 1–14.e1–e7, March 20, 2025 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Pierce� Rapid Gold BCA Protein Assay Kit Thermo Fisher Scientific A53226

Endo-free Plasmid Mini Kit II Omega D6950-02

VAHTS Universal V10 RNA-seq Library Prep Kit for MGI Vazyme NRM606-01

SMARTer Stranded Total RNA-Seq Kit v2 TAKARA 634413

23 Universal SYBR Green Fast qPCR Mix ABclonal RK21203

ABScript III RT Master Mix for qPCR with gDNA Remover ABclonal RK20429

FastPure Cell/Tissue Total RNA Isolation Kit V2 Vazyme RC112-01

Lipomaster 3000 Transfection Reagent Vazyme TL301-01

Mut Express MultiS Fast Mutagenesis Kit V2 (Vazyme) Vazyme C215-01

RNA Clean & Concentrator�-5 RNA ZYMO RESEARCH R1013

VAHTS mRNA Capture Beads 2.0 Vazyme N403-01

Deposited data

Mendeley data This paper DOI: https://doi.org/10.17632/gcypkw7jc4.1

ONT and RNA-seq data This paper SRA: PRJNA1044456

GLORI data Liu et al.3 GEO: GSE210563

HEK293T METTL3 KO direct RNA sequencing data Pratanwanich et al.54 SRA: PRJEB40872

mESCs METTL3 KO direct RNA sequencing data Zhong et al.34 GEO: GSE195618

HeLa direct RAN sequencing data Acera Mateos et al.28 GEO: GSE211759

Arabidopsis thaliana direct RNA sequencing data Parker et al.21 SRA: PRJEB32782

Synthetic Curlcakes data Liu et al.12 GEO: GSE124309

miCLIP data Linder et al.22 GEO: GSE63753

m6A-SAC-seq data Hu et al.23 GEO: GSE162357

m6ACE-seq data Koh et al.24 GEO: GSE124509

m6A-seq data Meyer et al.25 GEO: GSE29714

DART-seq data Meyer19 GEO; GSE125780

eTAM-seq data Xiao et al.4 GEO: GSE211303

TARBP2 HITS-CLIP data Goodarzi et al.55 GEO: GSE49648

im6A data Luo et al.33 Zenodo: https://doi.org/10.5281/zenodo.4734266

Experimental models: Cell lines

Human HEK293T cells ATCC CRL-3216; RRID:CVCL_0063

Human HeLa cells ATCC CCL-2; RRID:CVCL_0030

Human A549 cells Cellcook CC0202; RRID:CVCL_0023

Software and algorithms

ESPRESSO (v1.4.0) Gao et al.56 https://github.com/Xinglab/espresso

clusterProfiler (v4.3.8) Yu et al.57 https://github.com/YuLab-SMU/clusterProfiler;

RRID:SCR_016884

FeatureCounts (v2.0.1) Liao et al.58 https://github.com/byee4/featureCounts;

RRID:SCR_012919

DESeq2 Love et al.59 https://github.com/thelovelab/DESeq2;

RRID:SCR_015687

minimap2 (v2.17) Li60 https://github.com/lh3/minimap2;

RRID:SCR_018550

nanopolish (v0.13.2) Simpson et al.61 https://github.com/jts/nanopolish/;

RRID:SCR_016157

m6Anet (v2.0.0) Hendra et al.18 https://github.com/GoekeLab/m6anet;

RRID:SCR_025234

DENA (v1.0) Qin et al.17 https://github.com/weir12/DENA

nanom6A (v2.0) Gao et al.14 https://github.com/gaoyubang/nanom6A

Cutadapter (v3.5) Martin62 https://github.com/marcelm/cutadapt/;

RRID:SCR_011841
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REAGENT or RESOURCE SOURCE IDENTIFIER

STAR (Version 2.7.3a) Dobin et al.63 https://github.com/alexdobin/STAR;

RRID:SCR_004463

Samtools (v1.9) Li et al.64 http://samtools.sourceforge.net/;

RRID:SCR_002105

Guppy (v4.2.2) Oxford Nanopore Technologies https://community.nanoporetech.com/

downloads; RRID:SCR_022353

R (v4.3.0) https://www.r-project.org/ https://www.r-project.org; RRID:SCR_001905

Python (v3.6.10) https://www.python.org/ https://www.python.org/; RRID:SCR_008394

m6Aiso This paper https://github.com/SYSU-Wang-LAB/m6Aiso;

Zenodo: https://doi.org/10.5281/

zenodo.14650083

Other

Detailed m6Aiso model This paper Method S1
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
HeLa and HEK293T cells were cultured with Dulbecco’s modified Eagle medium (DMEM, GIBCO, Carlsbad, CA, USA) with 10% fetal

bovine serum (FBS). To establish the model of DART-seq, HEK293T cells were transfected with pcDNA3.1-APOBEC1-YTH-T2A-

copGFP plasmid by using Lipofiter 3.0 (Hanbio) according to the manufacturer’s instructions. The copGFP-positive cells were iso-

lated through cytometry at 48 hours post-transfection. To establish the model of cancer cells undergoing EMT, HeLa cells were

cultured with Dulbecco’s modified Eagle medium (DMEM, GIBCO, Carlsbad, CA, USA) without FBS for 12 hours. Then, 10 ng/ml

TGF-b was added to the DMEM medium for 72 hours to induce HeLa cells undergoing EMT.

Antibodies and reagents
Anti-FLAG (1:1000, FM1804), METTL14 (1:1000, HPA038002) antibodies were purchased From Sigma, USA. Anti-METTL3 (1:1000,

ab195352) andWTAP (1:1000, ab195380) were purchased fromAbcam, UK. Goat anti-rabbit (1:5000, SA00001) was purchased from

Proteintech, China. Mouse IgG-HRP (1:5000, 7076S) antibodies were purchased fromCell Signaling Technology, USA. GAPDHRab-

bit mAb (1:3000, A19056), E-Cadherin Rabbit mAb (1:500, A20798) and N-Cadherin Rabbit mAb (1:500, A19083) were purchased

from ABclonal Technology, China. Protein A/G Magnetic Beads were purchased from Vazyme Biotech, China.

METHOD DETAILS

Validation of m6A changes using SELECT
500 ng total RNAs from the control group or expression level normalized amount of RNAs from the knockdown groupweremixedwith

40 nM upstream primer, 40 nM downstream primer, 5 mMdNTP, 1.7 ml 103 rCutSmart buffer (New England Biolabs, B6004V), DEPC

H2O to the final volume 17 ml. Then, themixture of RNA and primers was incubated at the following temperatures: 1min at 90 �C, 1min

at 80 �C, 1min at 70 �C, 1min at 60 �C, 1min at 50 �C and 6min at 40 �C. Subsequently, a 3 ml mixture containing 0.5 U SplintR ligase

(New England Biolabs, M0375), 0.01 UBst 2.0 DNA polymerase (New England Biolabs, M0537), and 10 nmol ATPwasmixed with the

annealing products. The final mixture was incubated at 40 �C for 20 min, and then at 80 �C for 20 min. qPCR was then performed in

LightCycle 480 II (Roche) using 23 Universal SYBR Green Fast qPCRMix (ABclonal, RK21203). Relative SELECT products between

the experimental group and control group were calculated using the 2-DDCt method. Primers used in the SELECT assays were pro-

vided in Table S1.

The FTO demethylation reaction was executed in the reaction mixture that contained 1 mg of RNA, 0.25 mg of FTO demethylase,

283 mM (NH4)2Fe(SO4)2,6H2O, 300 mM a-ketoglutarate (a-KG), 2 mM L-ascorbic acid, 20 U of RNasin Ribonuclease Inhibitors

(N2615, Promega, USA), and 50 mM tris-HCl buffer (pH 7.5). The reaction was stopped by 40 mM EDTA after 3 hours of incubation

at 30 �C. Finally, RNA was purified by RNA Clean & Concentrator-5 (R1013, zymo research, USA) according to the manual.

GLORI-seq
First, mRNAs of A549 cells were captured by using VAHTS mRNA Capture Beads 2.0 (N403-01, Vazyme) from total RNA. Subse-

quently, GLORI was carried out according to previously published.3 Briefly, mRNAs were fragmented at 94 �C for 30 s. Then, gua-

nosine of fragmented mRNAs was protected by using a protection buffer (1.32 M glyoxal, 50% DMSO) at 50 �C for 30 min. Subse-

quently, 10 ml saturated H3BO3 solution was added and incubated at 50 �C for 30min. Next, deamination buffer (750 mM NaNO2,
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40 mMMES buffer, and 2.08 M glyoxal) was added and incubated at 16 �C for 8 h to deaminize adenine. Finally, deprotection buffer

(0.25 M TEAA and 25% deionized formamide) was added and incubated at 95 �C for 10 minutes to deprotect guanosine.

For library construction, SMARTer Stranded Total RNA-Seq Kits v2 Pico InputMammalian (Takara, 634411) was used according to

the manufacturer’s protocols. Briefly, about 50 ng RNAwith GLORI treatment was used to generate first-strand cDNA. Then, Illumina

adapters and indexes were mixed with first-stranded cDNA to generate PCR1 products by 5 cycles of PCR. Subsequently, PCR1

products were purified twice by using 0.83AMPure beads, then skipped the removal of the Ribosomal cDNA step and eluting

cDNA with 20 mL RNase-free H2O. The purified cDNA was amplified by 9 cycles of PCR2, and followed by purification using 13AM-

Pure beads. Finally, the library size distribution was detected by Qsep100NGS. The library sequencing was performed at GeneMind

Biosciences Company (Shenzhen, China) through the SURFSeq 5000 platform on PE100 mode.65

Co-immunoprecipitation
HEK293T cells were washed 2 times by using PBS buffer, and were lysed by lysis buffer (25 mMTris-HCl pH = 7.5, 0.1% IGEPAL CA-

630, 250 mM NaCl, 5% glycerol, 5 mM MgCl2) containing 1% protease inhibitor cocktail (HY-K0010, MCE, USA), 1% Phosphatase

Inhibitor Cocktail II (HY-K0022, MCE, USA), and 1 mM PMSF. Then, cell lysates were sonicated. Subsequently, RNase A (EN0531,

Thermo Fisher Scientific, USA) was added to lysates with 30 mg/mL and incubated at 30 �C for 30 min. Next, lysates were centrifu-

gated at 12,000 g for 15min at 4 �C and added IP buffer (25mMTris-HCl pH = 7.5, 0.1% IGEPAL CA-630, 250mMNaCl, 5% glycerol,

5 mM EDTA) with 1% protease inhibitor cocktail, 1% Phosphatase Inhibitor Cocktail II, and 1 mM PMSF to 1 mL. Lysates were incu-

bated with appropriate antibodies overnight at 4 �C, followed by incubating Protein A/G Magnetic Beads for 2 hours at 4 �C (PB101-

02, Vazyme Biotech, China). Immunoprecipitates were washed three times with cold IP buffer, and then eluted with 23 SDS loading

buffer by boiling for 10 min. Finally, SDS-PAGE was used to detect immunoprecipitates.

RNA sequencing and data preprocessing
RNA-seq was conducted on the HEK293T cells transfected with the copGFP-tagged APOBEC1-YTH fusion protein using Illumina

HiSeq 2500, and C-to-U editing sites were identified following the original bioinformatics pipeline of DART-seq.19 Nanopore direct

RNA sequencing was performed in accordance with the guidelines provided by Oxford Nanopore Technologies (Oxford, UK) using

DRS kits (SQK-RNA002) and R9.4.1 flow cells. The ionic current data from each FAST5 file were subjected to base calling using

Guppy v4.2.2 with the high accuracy model. Only reads exceeding the quality threshold of 7 were selected for subsequent analyses.

Sequencing reads were then aligned to the GRCh38 Ensembl annotated transcripts (v91) usingminimap2 (v2.17)60 with the following

parameters: ‘minimap2 -ax map-ont -k14 -uf -secondary=no --MD)’. Samtools (v1.9) was utilized to filter out secondary and supple-

mentary alignments and convert the aligned reads to the BAM format.64 ESPRESSO (v1.4.0)56 was used tomeasure the expression of

transcripts by counts. To align the read signals with the corresponding transcript references, the eventalignmodule of Nanopolish’s

(v0.13.2) was employed with the ‘--scale-events’ and ‘--signal-index’ options.61 After re-squiggling, continuous ionic current mea-

surements from each read were segmented into 5-mer events comprised of the mean, standard deviation, and dwelling time along

the corresponding transcriptome coordinates.

Endogenously labeling of m6A on single reads and generation of training data
For theONTDRS reads in HEK293T cells transfected with APOBEC1-YTH and an empty vector, we used Sam2Tsv pileup (v23c0a5c)

to identify the C-to-U mutations and calculate the mutation rates. To identify the APOBEC1-YTH-induced C-to-U mutations, we first

filtered out the mutations in dbSNP (v151) as well as the previously reported C-to-U mutations that could be induced by APOBEC1

alone.19 We further removed the C-to-U mutations that could be observed in the control cells with an empty vector as determined by

requiring the mutation rate exceeding 0.2 out of at least 10 reads. The remaining sites with C-to-U mutations on at least 10 reads and

C-to-Umutation rate exceeding 0.05 but below 0.9 were considered as the preliminary APOBEC1-YTH induced C-to-Umutations for

further analyses. To identify the clustered C-to-Umutations, we initially mapped the C-to-Umutations distributed across various iso-

forms of a single gene to the transcript with the longest coding regions. Then, we used 100 nt slidingwindowswith sliding step of 50 nt

along the transcript with longest coding regions for each gene to search for C-to-Umutations. Windows containing at least one C-to-

U mutation sites were merged if they have at least one nucleotide overlap. Subsequently, all the C-to-U mutation sites in the merged

windows containing at least 3 C-to-U mutation sites were considered as clustered C-to-U mutations and preserved for the down-

stream analysis (Figure S2B). For each clustered C-to-U mutation on each single read, the nearest GLORI annotated m6A site in

DRACH motif in HEK293T cells3 within a 100 nt distance from the mutation was initially determined as the methylated m6A site on

this single read. These methylated m6A sites on single reads were determined as the modified set of m6A on single ONT DRS reads

only if there was an absence of C-to-U mutation within a 9 nt distance from the corresponding m6A sites on the same reads.

To determine the unmodified set of m6A on single ONT DRS reads of HEK293T cells transfected with APOBEC1-YTH, we first

determined the unmodified 5-mers of DRACH by excluding the sites within a distance of 20 nt from the known SNPs in dbSNP

(v151) and the known single-nucleotide m6A sites. Specifically, the previously determined single-nucleotide m6A sites in HEK293T

cells by NGS-based experimental methods including GLORI,3 miCLIP,22 m6ACE-seq,24 m6A-SAC-seq23 were excluded; then the

peak regions of m6A-seq25 data in HEK293T cells determined as previously described66 were also excluded.
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To generate an independent testing positive set of methylated m6A on single reads from the ONT DRS reads of HEK293T cells

transfected with an empty vector, we selected the m6A sites on all the individual reads for the m6A sites with GLORI-determined

methylation levels exceeding 0.95 in HEK293T cells.3

To train themodels with input signals of 5-mer, 7-mer, 9-mer, and 11mer, respectively, themean, standard deviation and dwell time

of the ONT electric current signals at the 5-mers of DRACH motif (5-mer), the 5-mers located 1 nt (7-mer), 1–2 nt (9-mer), and 1–3 nt

(11-mer) upstream and downstream of the DRACH motif, respectively, from the above generated modified set, unmodified set, and

independent testing set were obtained for the downstream machine learning to develop m6Aiso.

m6Aiso model and its learning parameters
The overall framework of m6Aiso is depicted in Figure S3I. In brief, m6Aiso is a modified deep ResNet model with the input of RNA

sequences and their local-signal features to predict the states of sequence modification. In m6Aiso (Figure S3I), the 1*N-dimension

input sequences were first transformed to 4*N-dimension matrix data using one-hot encoding method; then, a convolutional neural

network (CNN) layerwasdesigned to learn thehigh-level sequence featuresbyusing twoconvolution filters (4*5*2) slidingon thewhole

sequenceswith stride 1. After that, we concatenated the output of the learned high-level features of local sequences in each filter with

their corresponding signal features and then inputted the combined featurematrix (5*N-4) to a 6-layer ResNet unit, which is stackedby

three ResNet blocks. The output of the first and last ResNet blocks were connected to a global maximum pooling layer and then con-

nected to a two-layer fully-connected neural network with ReLU and sigmoid activation functions, respectively. In the first CNN layer,

which accepts the input sequences, we used 2 convolution filters with size of 4*5; in the first ResNet block, we used 32 filters with size

of (333) in all CNN layers; we used 128 filters with size of (333) in all CNN layers and 32 filters with size of (333) in all CNN layers in the

second and third ResNet blocks, respectively. In each ResNet block, the dropout strategy was used in the forward and backward

propagation between CNN layers and connected to a maximum pooling layer after each CNN layer. The first fully-connected layer

was set to 16-way and the second fully-connected layerwas set to 1-way to output the positive prediction. As a result,m6Aiso outputs

the predicted modification probability at each DRACH site. The 1D-ResNet and self-attention models were constructed with similar

block size and fully-connected layer as the 2D-ResNetm6Aisomodel. A readwas deemedmodified if its predictedmodification prob-

ability surpasses a threshold ofP = 0.9. Conversely, a site on an individual readwith predictedmodification probability < 0.1 was clas-

sified as unmodified, while the remainder was not used in the m6A level calculation. The m6A methylation level for each site was then

calculated by dividing the number of modified reads by the total number of predicted modified and unmodified reads.

Model training and evaluation
By considering the situation that there are some false positive sequence samples in our training positive samples, we used a semi-

supervised learning strategy26 to train a better m6Aiso model. In detail, there are pseudo-labels for some positive samples, while

almost all labels of negative samples are real in our training sequence data. Meanwhile, the numbers of positive samples versus

the number of negative samples are extremely unbalanced. It is hard to train a good prediction model if we use those data to train

m6Aiso directly. To overcome the issues of pseudo-labels in positive samples and data unbalance in training data, we designed a

semi-supervised learning strategy to train the m6Aiso model. Specifically, we first randomly selected a part of the negative samples

and combined them with all positive samples to constitute a new training data set with relative balance samples. Because our data

cleaning process relies on accurately identifying false positives from the positive training samples, we used relatively more negative

samples (positive vs. negative at a ratio of 1:2.5) in the training to prioritize learning the negative signals. The negative samples were

randomly sampled from all negative samples for each training; therefore, the majority of the large number of negative samples were

used in the whole data cleaning process. Then we used the selected data set to train an initial prediction m6Aiso model and used it to

predict the pseudo-label of each positive sample in the training data. After that, we then discarded 5% of samples with the lowest

predictedm6A probabilities from the positive sample set and updated the training data to re-train them6Aisomodel. This update and

re-training process will be repeated and terminated till the false positive rate (FPR) < 0.05 in the positive training data. The FPRs were

calculated as the proportion of samples with predicted m6A probabilities < 0.5. Notably, although we used the trained model to re-

predict the positive samples in the training data, this was different from the standard self-training pipeline in semi-supervised learning

and may not be useless in most cases; while, as our training data is skewed to negative samples, the fitted model will tend to predict

false positive samples with negative pseudo-labels. This will help us to obtain cleaner positive samples in training data gradually and

fit a more conservative model. To train the m6Aiso model, we used the cross-entropy loss function and Adma optimizer to optimize

the weights in neural networks using a learning rate of 0.001. In each round of model training, we set the batch size as 64, and the

epoch as 50, and choose the model that performs the best on the remaining 10% of the training data.

Comparison between m6Aiso and NGS-based experimental methods
Based on the m6Aiso determined m6A sites on single reads, the genomic sites with at least 20 m6Amodified reads were identified as

m6Aiso determined m6A sites at the gene level. The m6A sites identified by miCLIP,22 m6A-SAC-seq,23 eTAM-seq,4 and m6ACE-

seq24 were obtained as previously provided. In addition, to evaluate the lowly methylated m6A sites, we also included the GLORI

identified m6A sites with levels < 0.1 in the m6A level comparisons by re-executing the original bioinformatics pipeline of GLORI3

but without removing the sites with levels < 0.1. The GLORI data in A549 cells generated in this study was also processed in the

same way.
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Comparison of m6Aiso with other machine learning models
To evaluate the effectiveness of m6Aiso in mapping m6A modifications, we conducted a comparative analysis with established

computational tools that are capable of detecting m6A at the read level and supporting methylation rate calculations. We ran

m6Anet18 (v2.0.0) with the default parameter, and only the DRACH sites with at least 20 reads were considered. For DENA17

(v1.0), we required at least 20 reads for the m6A sites and preserved the sites with modification levels below 0.1. For nanom6A14

(v2.0), reads with a modification probability exceeding 0.8 were considered as modified in this study. The probability value of

each nucleotide being an m6A site modeled by iM6A was directly obtained from the work of Luo et al.33

Performance of m6Aiso on the synthetic Curlcakes dataset
To assess the capacity of m6Aiso to accurately distinguish between modified and unmodified reads, we performed inference using

the synthetic Curlcakes dataset.12 We combined all reads from two replicates of the modified and unmodified samples, respectively;

and we excluded all 5-mer motifs that contained more than one adenosine. Thus, only reads from 43 sites within four DRACHmotifs

(GGACC, GGACU, UGACC, and UGACU) were preserved for subsequent analyses.

Calculation of m6A methylation and expression levels for isoforms
For m6Aiso andm6Anet determinedm6A sites at the gene level, we calculated them6A level of these sites on each isoform according

to the aligned isoforms of the long reads that carry the m6A sites. At least 10 reads covering the m6A sites on the same isoforms were

required to determine the methylation levels of the m6A sites on specific isoforms. Based on the m6A sites on each isoform, the m6A

level of the isoform was calculated as the sum of all the modified reads at all m6A sites on the isoform divided by the sum of the read

coverages of all those sites. Meanwhile, the C-to-U mutation level of each isoform was determined as the sum of the mutated read

counts of all C-to-U mutation sites on the isoform divided by the sum of the read coverages of all those mutation sites.

Analysis of wild-type and METTL3-KO samples
To assess the precision of m6Aiso, we obtained ONT DRS data for wild-type and corresponding METTL3-KO in HEK293T and

mESCs from Pratanwanich et al.54 and Zhong et al.34, respectively. The datasets underwent identical preprocessing steps as pre-

viously described, with the exception that the mESCs samples were aligned to the GRCm38 Ensembl annotated transcripts (v91).

The m6A sites supported by at least 20 modified reads in WT orMETTL3-KO and covered by more than 20 modified plus unmodified

reads in both conditions were used in the comparisons of m6A levels between WT andMETTL3-KO samples. The GLORI dataset for

WT andMETTL3-KD in HEK293T was obtained from Liu et al.3 The eTAM-seq dataset for WT andMettl3-KO in mESCs was obtained

from Xiao et al.4

Identification of m6A sites across cell lines
The DRS datasets for five cell lines (A549, MCF7, K562, HCT116, and HEK293T), HeLa cells, and Arabidopsis thalianawere obtained

from the Singapore Nanopore-Expression project (SG-NEx project),27 Acera Mateos et al.,28 and Parker et al.21, respectively. The

replicates of DRS data collected from different cell lines were merged, respectively. We then processed the data in the same way

as we have above described, except that the Arabidopsis thaliana samples were aligned to the TAIR10 transcriptome.

Co-occurrence analyses of m6A sites
Only the reads spanning at least 90% of the length of their corresponding mapped transcripts are used for the analyses. For each

read and isoform, we calculated the transcriptomic distance between two adjacent m6A sites. To calculate the number of m6A mod-

ifications clustered with adjacent m6A sites within 50 bp on the same genes for Figure 3B, we used the consolidated transcripts of all

isoforms for each gene.

For each pair of m6A sites in the same gene, we employed the parameter D’,36 a metric commonly used to assess the LD between

two genetic variants within a population, to investigate the linkage of the pair of m6A sites across all the reads that covered the two

sites using the following formula:

D0 =
D

Dmax

;Dmax =

�
minðPA � ð1 � PBÞ; ð1 � PAÞ � PBÞ if D> 0
minðPA � PB; ð1 � PAÞ � ð1 � PBÞÞ if D< 0

where D = PAB � PA�PB, PA and PB represented the proportions of reads with modified A site and modified B site, respectively,

while PAB denoted the proportion of reads with both modifications. A positive D0 value implies that the two modified sites tend to

co-occur beyond random chance.

Analysis of m6A sites on isoforms of single genes
Only the isoforms supported by at least 10 ONT DRS reads, were included in the downstream analysis. For a specific m6A site on a

particular isoform, we employed Fisher’s exact test to assess whether its m6A level significantly differed from the combination of

other isoforms from the same gene followed by Benjamini-Hochberg (BH) based false discovery rate (FDR) correction for multiple

testing. Them6A sites exhibitingm6A level changes exceeding 0.1 and FDR less than 0.05 were considered as isoform-specific highly

or lowly methylated m6A sites. To analyze the transcript type compositions of the isoform-specific highly and lowly methylated m6A
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sites, we excluded the genomic sites that exhibit highly methylated on one isoform while displaying lowly methylated on the other

isoform.

To investigate the relationship betweenm6A and their proximity to exon junctions, we compared them6A levels of identical sites on

pairs of different isoforms. We exclusively used the sites that were more than 200 nt away from EJCs on one of the pairs of isoforms

but less than 100 nt away from the EJC on the other isoforms. Fisher’s exact test was used to evaluate the difference in modification

level of m6A sites, with FDRs calculated using the BH method. The m6A sites were considered as differentially methylated m6A sites

on isoform if the absolute changes of m6A levels between two isoforms exceeded 0.1 and FDRs less than 0.05. The TARBP2 HITS-

CLIP datawas obtained fromGoodarzi et al.55 Genome coordinates fromhg19were converted to hg38 using the LiftOver tool. Introns

and flanking exons bound by TARBP2 were included in the downstream analysis.

To assess the relationship between m6A level changes and isoform expression, the isoform expression was quantified using

ESPRESSO56 and only the isoforms with CPM values greater than 10 were included in the analyses. A two-tailed Fisher’s exact

test was employed to compare modification levels among A549, MCF7, and HCT116 cell lines. Multiple testing correction was per-

formed using the BHmethod. A transcriptomicm6A site was considered differentially methylated if the absolute change of m6A levels

exceeded 0.2 and the FDR was less than 0.01. Isoform expression changes between two cell lines were defined as the difference in

expression fractions exceeded 0.1.

Identification of dynamic m6A sites during the EMT process
Cutadapt62 (v3.5) was used to remove the adapters from the Illumina sequencing reads. Then, the reads were aligned to the human

reference genome (GRCh38) using STAR63 (v2.7.4a). FeatureCounts58 (v2.0.1) was utilized to quantify the number of reads mapped

to each gene. Genes with counts exceeding 10 in both control and TGF-b samples were retained for subsequent analysis. Differential

expression analysis was conducted using DESeq2.59 The genes with fold changes > 2, and P-adjust values < 0.01 were identified as

the differentially expressed during the EMT process. GO enrichment analysis was conducted using the R package clusterProfile57

(v4.3.8). The m6A-seq data from control and TGF-b induced HeLa cells were obtained from the GEO database (GEO:

GSE112795). The data were processed and m6A peaks were identified as described previously.51,66 For the replicates of the ONT

DRS control and TGF-b samples, we preprocessed them as described above previously. Them6Aiso determined commonm6A sites

of the two replicates with identical loci on the genome in control or TGF-b samples were used in the downstream isoform analyses. To

investigate isoform-specific dynamic changes of identical m6A sites, we compared the same m6A sites on the same isoforms be-

tween control and TGF-b samples. Only the m6A sites on isoforms that covered at least 10 reads in all samples were used in the an-

alyses. Differentially methylated m6A sites at isoform level were determined as the sites with absolute changes in their modification

levels between control and EMT cells exceeding 0.15. Genes with up-regulated m6A sites on isoforms were selected for functional

enrichment analysis using clusterProfiler57 (v4.3.8) based on MSigDB C2 and C5 gene sets.67,68 The fractions of expressed isoforms

for each gene were calculated based on the ESPRESSO (v1.4.0)56 determined isoform expression.

Motif enrichment analyses for the promoter regions
We defined an isoform as an alternative promoter isoform if its transcription start site (TSS) is located more than 500 nt away from the

TSS of the reference isoform, which exhibits the highest expression level in the same gene in control cells. Promoter regions were

from 1kb upstream to 500 bp downstream of the TSS. For motif enrichment analysis, we obtained the binding motifs of SMAD3

from the CIS-BP database.69 The R packagemotifmatchr (https://github.com/GreenleafLab/motifmatchr.git) was then used to deter-

mine whether transcription factor motifs matched the promoter regions. The number of promoter regions matching a specific tran-

scription factormotif was subsequently counted for different sets of isoforms. Finally, we performed a one-tailed Fisher’s exact test to

determine if alternative promoter isoforms were significantly enriched in the motif of SMAD3.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R or Python software. Error bars represent the standard deviation (SD) of themean of the

replicates. Detailed information about statistical tests is provided in figure legends for respective figures.

ADDITIONAL RESOURCES

The detailed protocol for m6Aiso is available in Method S1.
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