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Abstract: Background: Neuroendocrine neoplasms are a rare and heterogeneous group of neoplasms.
Small-sized (≤2 cm) pancreatic neuroendocrine tumors (PanNETs) are of particular interest as they
are often associated with aggressive behavior, with no specific prognostic or progression markers.
Methods: This article describes a clinical case characterized by a progressive growth of nonfunctional
PanNET requiring surgical treatment in a patient with a germline FANCD2 mutation, previously not
reported in PanNETs. The patient underwent whole exome sequencing and single-cell RNA sequenc-
ing. Results: The patient underwent surgical treatment. We confirmed the presence of the germline
mutation FANCD2 and also detected the germline mutation WNT10A. The cellular composition of the
PanNET was analyzed using single-cell sequencing, and the main cell clusters were identified. We
analyzed the tumor genomics, and used the data to define the effect the germline FANCD2 mutation
had. Conclusions: Analysis of the mutational status of patients with PanNET may provide additional
data that may influence treatment tactics, refine the plan for monitoring such patients, and provide
more information about the pathogenesis of PanNET. PanNET research using scRNA-seq data may
help in predicting the effect of therapy on neuroendocrine cells with FANCD2 mutations.
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1. Introduction

Pancreatic neuroendocrine neoplasms (PanNENs) are a heterogeneous group of rare
tumors originating from neuroendocrine cells and comprising 1–2% of all pancreatic neo-
plasms. PanNENs are classified into functional and nonfunctional categories based on
the presence or absence of hormonal hypersecretion of biologically active substances [1].
Nonfunctional PanNETs comprise about 60–90% of all PanNETs [2,3].

PanNENs are further classified into well-differentiated pancreatic neuroendocrine
tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). NETs are
divided into three grades (G1, G2, G3), depending on proliferative activity [1,4].

Over the recent decades, there has been a notable improvement in the detection
of PanNETs, particularly for small nonfunctional PanNETs (sized ≤ 2 cm), due to the
availability of technologically advanced high-precision imaging techniques [1,5–7].
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Considering the malignant potential of PanNETs, surgical intervention remains the
primary method of treatment. Highly differentiated nonfunctional T1 PanNETs are of
particular interest, since they often follow an atypical course of progression. Some of
these tumors appear clinically benign, and, therefore, in certain circumstances, they can
be managed with surveillance [8]. However, some small PanNETs may exhibit a clinically
aggressive course. Notably, a size of 2 cm or larger is currently considered a threshold for
surgical intervention in nonfunctional PanNETs [9].

Nonetheless, any tumor would have been smaller than 2 cm at a certain point of
development. Therefore, the treatment strategy for such a patient cohort remains debatable
and is determined individually. According to the available data, the rate of metastatic
spread to regional lymph nodes in patients with small PanNETs can reach 24–27% [10,11],
with a rate of remote metastases of 7.6% [12,13].

Most PanNETs occur sporadically, and only approximately 10% of cases are associated
with germline mutations as part of certain syndromes. PanNET-associated germline mu-
tations have been reported to occur in multiple endocrine neoplasia type 1 (MEN1), von
Hippel-Lindau syndrome (VHL), neurofibromatosis type 1 (NF1), and tuberous sclerosis
complex (TSC) genes [14–17].

PanNETs associated with specific syndromes are typically multifocal, demonstrating
diverse behavior and prognosis. In the case of germline MEN1 mutations, nonfunctional
PanNETs demonstrate malignant behavior in 13% of cases, whereas functional PanNETs
are malignant in 11–50%. Metastatic progression of PanNETs does occur in a subset
of patients with germline MEN1 mutations, though it is less common, as compared to
sporadic PanNETs [18]. For example, liver metastases in germline MEN1-mutant PanNETs
are identified in approximately 19% of cases, whereas in sporadic PanNETs it’s much more
prevalent—in 60% of cases [19–21].

Germline VHL-mutant PanNETs are mostly isolated (67–70% of cases), demonstrating
malignant behavior in 12–20% of cases [22–24]. PanNETs with germline NF-1 or TSC
mutations are extremely rare: only several such cases have been reported in the litera-
ture [18,25–28].

The most frequently described somatic mutations in sporadic PanNETs occur in the fol-
lowing genes: MEN1, DAXX (death domain associated protein), ATRX (α-thalassemia/mental
retardation syndrome X-linked), and genes related to the mTOR signal pathway [14,16,17].
The available evidence suggests that DAXX/ATRX mutations are associated with an in-
creased malignant potential of PanNETs. Patients with these mutations have a higher
recurrence rate and lower overall survival; therefore, DAXX/ATRX mutations in small
nonfunctional PanNETs can be considered as a potential marker of malignant progres-
sion [29–34].

Such biomarkers are particularly important for patients with small (≤2.0 cm) PanNETs
when selecting between surveillance and surgical intervention. In the study conducted
by Mastrosimini et al., a retrospective analysis of EUS-FNB (endoscopic-ultrasound fine-
needle biopsy) data was performed to evaluate the expression of DAXX/ATRX, as well as
alternative lengthening of telomeres (ALT) activity. The study analyzed data on 41 patients
with PanNETs, among which 11 patients had small neoplasms (sized ≤ 2 cm). In 5 out
of 11 patients with small PanNETs, the aggressive disease course following surgical in-
tervention was observed, which manifested as metastatic lymph node involvement and
lymphovascular invasion [33]. Another study demonstrated that recurrence-free survival of
patients with small PanNETs (sized ≤ 2 cm) was lower in those with reduced DAXX/ATRX
expression and high ALT activity. These results confirm the potential clinical significance of
molecular diagnostic evaluation for pancreatic neoplasms and the importance of identifying
novel predictive markers that can influence treatment strategy and patient surveillance
algorithms [35].

In this article, we describe a clinical case of a small PanNET, which demonstrated
tumor progression accompanied by a germline FANCD2 mutation, previously not reported
in PanNETs. The FANCD2 gene is located on chromosome 3 and encodes a protein under the



J. Clin. Med. 2024, 13, 7621 3 of 18

same name that is involved in DNA damage repair. Mutations in the FANCD2 gene impair
the interaction between the FANC protein complex and BRCA1 (breast cancer-associated 1).
As a result, those proteins lose their capacity to prevent chromosome breakage, causing the
accumulation of DNA damage.

2. Case Report

Patient D., female, aged 66 years, presented with discomfort in the epigastric area
since December 2021. Upon examination at a local outpatient facility, erosive gastritis
was revealed through gastroscopy. Additionally, an ultrasound of the abdominal cavity
indicated the presence of a pancreatic tumor 12 × 10 mm in size. Multispiral computed
tomography (MSCT), conducted in February 2022, confirmed the presence of pancreatic
neoplasm up to 13 mm (Figure 1A,B). Follow-up MSCT with IV contrast enhancement in
April 2022 demonstrated a pancreatic tumor of 13 × 12 mm, with a CT pattern consistent
with a neuroendocrine tumor. The patient was subsequently referred to a gastroenterologist
and surgeon at an expert-level institution.
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Figure 1. Multispiral computed tomography of the abdominal cavity, patient D. The neuroendocrine
tumor of the pancreas body, with the indicated size, is highlighted with arrows. Frontal (A) and
sagittal (B) views of the MSCT performed in February 2022. Frontal (C) and sagittal (D) of the MSCT
performed in August 2023.

The laboratory workup conducted in the autumn of 2022 did not indicate any elevation
of tumor markers (Table 1). The hormonal activity of the tumor was evaluated, but no
indicators of abnormal hormone production were revealed (Table 1).

The patient was diagnosed with a nonfunctional NET of the pancreatic body. The
diagnosed comorbidities included grade 1, stage 1 arterial hypertension, chronic superficial
gastritis, and hiatal hernia. Considering the absence of hormonal activity, small size, and
lack of tumor growth over time, surveillance at a specialized expert center (every 6 months)
was recommended to the patient. Follow-up MSCT in August 2023 demonstrated tumor
growth, reaching a size up to 18.3 × 15 mm (Figure 1C,D).

It is known from the patient’s medical history that a germline pathogenic variant of
the FANCD2 gene was previously identified.
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Table 1. Case laboratory values.

Test Result Normal Range

CA 19-9 (cancer antigen 19-9) 9.89 U/mL <37 U/mL

CEA (carcinoembryonic antigen) 3.4 ng/mL <5.0 ng/mL

AFP (alpha-fetoprotein) 2.26 ng/mL 0–7 ng/mL

gastrin 59.0 ng/L 13–115 ng/L

chromogranin A 41.0 ng/mL 0–100 ng/mL

calcitonin 0.71 ng/L 0.0–6.40 ng/L

serotonin 7.93 µmol/L 1.85–8.16 µmol/L

ACTH (adrenocorticotropic hormone) 5 pg/mL 0–46 pg/mL

For our research we performed full exome NGS (next-generation sequencing) of
peripheral blood lymphocytes, and identified an inactivating heterozygous FANCD2 muta-
tion, variant chr3:10093325T>G in the gene FANCD2 (ENST00000675286.1, c.3888+2T>G,
rs1419879344). This variant is described as pathogenic in the ClinVar and VarSome
databases. To date, only one case of this specific mutation in the FANCD2 gene has been
documented in a patient with Fanconi anemia. There are currently no published data on
this specific variant in patients with PanNETs [36]. Another detected germline variant
was a heterozygous WNT10A mutation, variant chr2:218882368C>A in gene WNT10A
(ENST00000258411.8, c.321C>A, rs121908119), described as pathogenic in ClinVar and
associated with Odonto-onycho-dermal dysplasia, tooth agenesis, and other phenotypes.
WNT10A is suggested to be a WNT signaling activator; WNT10A knockout results in
reduced WNT signaling and β-catenin levels [37–39].

It should be noted that the patient has no family history of oncological disorders.
Apart from PanNET, the patient had no other oncological diseases during her life.

Taking into account the tumor growth by more than 5 mm over 1 year of follow-up,
along with the presence of an inactivating mutation with malignant potential, the decision
was made to proceed with surgical intervention. Laparoscopic tumor enucleation was
performed in December 2023. The post-surgical period was unremarkable.

Further follow-up for this patient was recommended: tests for chromogranin A,
serotonin, gastrin serum level-3, 6 and 12 months after surgery; CT scan of chest, abdomen,
and pelvis 6 and 12 months after surgery; PET/CT-Ga-68-DOTA-TATE in case of clinical,
laboratory, or radiological signs of progression.

The pathomorphological examination of the resected fragment of the pancreatic tissue
(Figure 2) demonstrated a round s-sped tumor in a thin fibrous capsule.
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The tumor was histologically organized as trabecular and organoid-like (pseudoglan-
dular) structures (Figure 3A). These structures were composed of middle-sized epithelioid
cells with eosinophilic cytoplasm and monomorphic round-shaped nuclei containing typi-
cal microvesicular chromatin, without evidence of mitotic activity (no mitosis was found
over the area of 10 mm2). The tumor focally grew through its fibrous capsule, with initial
invasion into the adjacent pancreatic tissue. There was no evidence of invasion into lymph
vessels or perineural growth. An area of sclerosis was found in the center of the neoplasm.
No necrosis was observed. Tumor cells were located less than 0.1 mm from the marked
resection margin; the adjacent pancreatic tissue demonstrated findings consistent with
significant coagulation.
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Figure 3. Histological and immunohistochemical examinations of the pancreatic surgical specimen
from patient D. (A) The pancreatic neuroendocrine tumor demonstrates trabecular and organoid-
like structure, consisting of mid-sized epithelioid cells with monomorphic round-shaped nuclei
with typical microvesicular chromatin (hematoxylin-eosin staining, magnitude ×400). (B) Strong
diffuse cytoplasmatic staining of tumor cells with anti-chromogranin A antibody. (C) Strong diffuse
cytoplasmatic staining of tumor cells with anti-synaptophysin antibody. (D) Ki67, the marker of
proliferative activity, is positive in 2% of tumor cell nuclei (arrows).

An immunohistochemical (IHC) examination was performed to confirm tumor his-
tological type and determine its proliferative activity. The IHC analysis demonstrated a
positive cytoplasmatic reaction of the tumor cells to staining with neuroendocrine markers
chromogranin A (Figure 3B) and synaptophysin (Figure 3C). Ki67, the marker of prolifera-
tive activity (Figure 3D) was positive in 2% of nuclei of the tumor cells. In addition, 100%
of the membranes of the tumor cells stained positive for SSTR2 (Figure 4), which, according
to the criteria proposed by Volante M. et al. [40], is typical for level 3+ expression of type 2
somatostatin receptors. Therefore, a well-differentiated pancreatic neuroendocrine tumor
(NET, G1) was pathologically verified, with a size of 1.9 cm, pT1 pNx L0V0 Pn0.

A piece of the collected surgical specimen of the tumor tissue was used to prepare
a single-cell suspension for subsequent single-cell RNA-sequencing (scRNA-seq) library
preparation according to the 5′ 10× Genomics protocol. After processing and quality
control, the resulting Seurat object contained 954 high-quality cells. After dimensional
reduction and clustering, cells were manually annotated into tumor cells and immune
cells, namely, mast cells, monocytes, macrophages, dendritic cells, B cells, and T/NK cells,
based on the results of differential expression analysis and the known cell type markers
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(Figure 5A,B). The copy number variation (CNV) analysis revealed that all neuroendocrine
cells were annotated as tumor cells and belonged to one CNV clone despite the observed
intratumoral transcriptomic heterogeneity (Figure 5C–E). This might be due to distinct
spatial localization of cells in tumor tissue or differences in point mutations in neuroen-
docrine cells. Differential expression analysis between tumor clusters revealed distinct
expression profiles in clusters 1 and 2, while cluster 0 had only a few specific marker genes.
KEGG pathway analysis using gene set enrichment analysis (GSEA) revealed no relevant
pathways enriched in any of the tumor cell populations.
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dot plot with cell type markers used for annotation. (C). Cells on t-SNE coordinates from A, annotated
based on the result of CNV analysis of tumor clonality. (D). Clustered neuroendocrine tumor cells on
t-SNE coordinates. (E). Main markers of tumor cell clusters.
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In order to define the components of the tumor microenvironment more precisely
and characterize its compositional patterns, we integrated our dataset with published
scRNA-seq data from four samples of PanNETs obtained using the 10× Genomics 5′ library
preparation protocol (Figure 6A) [41]. After batch correction, the final cell populations
comprised cells from different samples (Figure 6B). The cell type labels were manually
assigned based on known marker genes (Figure 6C). Integration with published data
enabled the division of T/NK cells into CD4+ T cells, CD8+ T cells, and NK cells, and the
identification of the population of endothelial cells/fibroblasts although it was not present
in the piece of sample used for scRNA-seq analysis (Figure 6D).
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Figure 6. Integration and comparison of the obtained scRNA-seq data on PanNET with published
scRNA-seq data. (A). An integrated and annotated cells’ representation on UMAP coordinates.
(B). Distribution of cell sources on UMAP coordinates (pnet1–4 are samples from the published
dataset). (C). A dot plot with cell type markers used for annotation of integrated data. (D). Distribu-
tion of cell types in samples (pnet1–4 are samples from the published dataset).

Overall, we observed similar proportions of different cell types in all samples with a
higher share of stromal cells in tumors from published scRNA-seq data due to the presence
of a CD45-positive cell enrichment step in the experimental design.
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However, to determine associations between FANCD2 and WNT10A germline muta-
tions and clinical manifestation, e.g., response to therapy and prognosis or tumor molecular-
level alterations, there is a need for a group of patients harboring variants in the gene. The
small amount of published data on PanNETs prevents a more complex analysis; however,
the scRNA-seq data and results of basic characterization of the tumor sample presented in
this work can enhance future studies.

To further assess the impact of germinal FANCD2 and WNT10A mutations on the
tumor, we conducted WES (whole exome sequencing) for the patient’s tumor sample. We
discovered that the tumor gained a 2.05 mutation/Mb TMB (tumor mutational burden).
While this rate would be generally considered a low TMB, for PanNET, this rate is no-
tably high as the mean TMB for PanNET is demonstrated to be 0.82 (range 0.04–4.56) or
lower [42,43]. This, indeed, might be a consequence of impaired DNA repair with FANCD2
mutation. Additionally, we decomposed the sample mutational profile to COSMIC mu-
tational signatures and discovered the presence of SBS30, which is associated with base
excision repair deficiency (Figure 7B) [44,45]. As of now, FANCD2 has been connected to
more than DNA interstrand crosslink (ICL) repair: it is involved in the binding of various
DNA damage repair factors to DNA in a number of mechanisms, resolves conflicts between
replication and transcription events, and participates in mRNA nuclear export to prevent
R-loops [46–48]. It is possible that in the PanNET setting, FANCD2 damage has a more
pronounced effect on base excision repair (BER) mechanisms than on others. However, it
should be noted that the tumor also has a deletion of MUTYH (2 copies out of 4 deleted,
LOH). MUTYH damage has been previously connected with BER deficiency [49], which
might be an alternative explanation for the presence of a BER deficiency signature.

To investigate the further effect of FANCD2 variant on genome stability, we estimated
microsatellite instability score (MSI-score) and homologous recombination deficiency (HRD-
score) for the tumor, and the latter was suggested to be especially indicative due to FANCD2
participation in homologous recombination. MSI-score was equal to 1.9% of the inspected
sites and HRD-sum reached 27. While we do not have an MSI or HRD PanNET cohort to
draw comparisons, it can be reasoned that the sample is MSI-stable due to the very low
percentage of altered sites. However, the HRD score, when compared with HRD values in
breast cancer, while it does not reach levels of BRCA-deficient samples, is still higher than
40–50% of samples without BRCA deficiency. It can be carefully suggested that the obtained
value can be considered high for less aggressive tumor types, such as PanNETs. We also
called fusions from the WES data and discovered no targetable fusions in this sample.

Nevertheless, the high mutation rate alone can still be connected with impaired
DNA damage repair due to FANCD2 damage. Additionally, it has been proposed that
FANCD2 may protect the genome from unrestricted resection by DNA2, which results in
chromosomal rearrangements and tumor aneuploidy [50]. It is worth noting that our case
has a decent number of these CNA events (Figure 7D). On the other hand, the variant
allele frequency (VAF) of this variant in the tumor was 0.26, indicating that one of the
copies with the FANCD2 pathogenic variant was lost. Additional evidence of DNA damage
repair impairment was a comparison of signature activity between the microenvironment
and tumor cells of the patient (Figure 7C). DNA damage repair activity was decreased in
tumor cells (p-value < 0.0001). Unfortunately, direct comparison with signature activity
in tumors without FANCD2 mutation was impossible due to the prevalence of the batch
effect. Still, the presented evidence speaks of a possible influence of FANCD2 mutation
on tumor processes.

WNT10A heterozygous germline variant was present in the tumor sample with VAF
0.15, which corresponded to the loss of the WNT10A pathogenic variant in the tumor
sample (as predicted purity is 0.68 and there is LOH in the WNT10A region (Figure 7D)).
Interestingly, the tumor instead possessed two somatic variants in negative WNT regulators,
genes DKK1 and WIF1 (Figure 7A) [51,52], while WNT10A damage or knockout was
connected with WNT deactivation [37–39]. We suggest that an increase in WNT signaling
is beneficial for this PanNET tumor, hence the loss of the WNT-inhibiting variant and
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mutations in WNT-negative regulators. However, it is impossible to make signature
activity comparisons with microenvironment cells due to their own active WNT signaling
and proliferation.
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In addition, the tumor harbored a number of PanNET common somatic mutations, like
mutations in mTOR signaling, including TSC2, MEN1, and ATRX mutations (Figure 7A),
perturbing chromatin modeling pathways. These somatic mutations are commonly as-
sociated with a more aggressive tumor profile and worse prognosis [30,31,53]. The CNA
profile also possesses traits of an aggressive tumor subtype (termed Group 1 in Lawrence
et al.) [43], namely, aneuploidy of chromosome 11 and aneuploidy of other chromosomes,
which results in loss of heterozygosity. While, with a single case report, it is impossible
to directly connect FANCD2 deficiency with these features, we can carefully suggest that
deficient DNA damage repair allows for more frequent and variable mutation occurrence
and, thus, a capability to evolve and gain variants for further propagation more quickly.

3. Discussion

Currently, the role of FANCD2 in tumors seems dual. Germline FANCD2 mutations
were detected in patients with various tumors and were suggested to be procarcino-
genic [54,55]. FANCD2-low cell lines established from ovarian surface epithelial cells
demonstrated chromosomal breakage response to mitomycin C, which demonstrates that
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FANCD2-low cells might be more susceptible to tumorigenic processes [56]. Addition-
ally, recently, somatic FANCD2 mutation (c.2022-5C>T) emerged as a biomarker of early
progression in chronic myeloid leukemia. This mutation was suggested to be damaging
and inactivating [57]. Among neuroendocrine neoplasms of various locations, FANCD2
mutation was detected in rectal neuroendocrine neoplasms and intestinal NETs [58,59].
However, the occurrence was not high (5/38 and 1/48) and those mutations were not inves-
tigated in detail. In one out of thirteen patients with pancreatic neuroendocrine neoplasms,
Shunrong et al. detected a mutation at the FANCD2 splicing site. Clinically, that patient was
found to have a PanNET G2 T3N1M1a with liver metastasis and metastasis in a regional
lymph node [60].

However, FANCD2 expression was repeatedly reported to be associated with poor
prognosis in various cancers and to be higher in tumors than in normal tissues. Zhao
et al. [61] demonstrated this on TCGA data; the same results were achieved with testing
FANCD2 expressions or staining in breast cancer [62,63], endometrial carcinoma [64], col-
orectal cancer [65], esophageal squamous cell cancer [66], hepatocellular cancer [67], lung
adenocarcinoma [68], and in pan-cancer settings [69]. The only outlier is in breast cancer
research by Rudland et al., where the absence of FANCD2 staining was associated with
poor survival [70]. In most of these research studies (notably, except for Rudland et al. [70]),
elevated levels of FANCD2 were strongly associated with increased proliferation (G2M
signatures, Ki67). This might explain some of the risks connected with FANCD2 as an
increase in Ki67 levels is universally connected with poor survival of tumor patients [71].
For example, Zhao et al. [61] did not include proliferation in their survival analysis. How-
ever, in breast cancer, FANCD2 staining was demonstrated to be predictive independent of
Ki67 [62,63]. This effect on patient survival might be due to FANCD2 resolving replication
fork stalling (thus correlating with the intensity of proliferation) and conferring resistance
to chemotherapy and chromosomal breaks [56,57,61]. Without FANCD2, tumor prolifera-
tion stalls; however, early on in tumor development, its damage might provide genomic
instability required for tumor development and evolution.

The presence of a FANCD2 mutation probably contributes to the potential initiation of
the tumorigenesis process, also contributing to the progression of a pre-existing malignancy,
thereby increasing the metastatic potential of a tumor. In this clinical case, the tumor
growth of more than 5 mm within a year is noteworthy and may be due to the presence
of a germline FANCD2 mutation, which, along with other considerations, eventually
determined subsequent treatment strategy for this patient, resulting in surgical intervention
despite the small size of the tumor.

Pre-surgical identification of germline mutations in patients with PanNETs may be-
come a decisive consideration when selecting individual treatment strategies in a patient
with stage T1 PanNET.

The significance of pathogenic variants in FANCD2 in tumors for therapy choice is also
worth consideration. It stands to reason that, since FANCD2 is required for tumor survival
and DNA ISL repair, patients with mutated FANCD2 might benefit from PARPi (PARP
inhibitors) [72,73]. While this patient is unlikely to require PARPi due to the tumor type
and current absence of metastatic process, it is of interest for other patients and tumor types
whether FANCD2 mutations should be routinely tested as a PARPi biomarker. Previously,
it has been demonstrated by Fallah et al. [74] that, while patients with variants in BRCA1,
BRCA2, CDK12, and PALB2 benefitted from PARPi, there was no significant benefit for
patients with variants in CHK2 and AT, although both of these genes are participants of HR
repair. While some clinical trials have tried testing for larger lists of Fanconi anemia group
genes, they have not detected any FANCD2 variants in their patients [75], so their value
is currently unresolved. In this study, the FANCD2 variant was demonstrated to have an
effect on tumor landscape compared to PanNETs without this mutation. However, more
cases, especially of tumor types that commonly benefit from PARPi, should be analyzed
before judging FANCD2 pathogenic variants to be valuable biomarkers for this treatment.
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An examination of the tumor specimen using scRNA-seq data may aid in predicting
the effect of the therapy on FANCD2-mutant neuroendocrine cells as well. In the present
study, scRNA-seq analysis helped determine various cellular populations of the microen-
vironment and describe heterogeneity inside the tumor. Three distinct clusters of tumor
cells were characterized by different expression profiles, despite all belonging to the same
CNV clone. Expression of genes involved in DNA damage repair was lower in the tumor
component in comparison to the microenvironment cells, demonstrating the impairment
of that process in neuroendocrine cells caused by the FANCD2 mutation and, presumably,
resulting in a relatively high TMB in this specimen and dynamic growth over the 1 year pe-
riod of follow-up. Tumor scRNA-seq data are publicly available through Gene Expression
Omnibus and can be used for a more detailed analysis of PanNETs in larger cohorts.

Limitations

A limitation of our study is that it is a report on only one patient with PanNET.
Naturally, a larger sample of patients with this pathology is required to confirm the role of
FANCD2 in the genesis of PanNET. Another limitation is the small selection of scRNA-seq
PanNET samples in the literature, which complicates comparative analysis. The batch
effect also complicates comparisons with samples without FANCD2 mutation.

4. Materials and Methods
4.1. Sources of the Human Tissue and Blood Samples

The human tissue sample of the pancreatic neuroendocrine tumor and blood samples
involved in this study were obtained from the Moscow Clinical Scientific Center named
after Loginov, Moscow 111123, Russian Federation. This study was approved by the Local
Ethics Committee of the Moscow Clinical Scientific Center named after Loginov of the
Moscow Department of Healthcare.

4.2. Histopathology and Immunohistochemistry

Tissue samples were collected, fixed, and then paraffin-embedded. A total of 5 µm
sections were obtained and subjected to histopathology and immunohistochemistry (IHC)
analyses. We used hematoxylin and eosin (HE) staining for histopathological examination
and immunohistochemistry for expression analysis, respectively. IHC was performed on a
fully automated VENTANA Benchmark XT stainer (VENTANA Medical Systems; Roche
Group, Tucson, AZ, USA) using the following antibodies: anti-synaptophysin (Kit-0022;
MXB Biotechnologies, Fuzhou, China), anti-chromogranin A (MAB-0707; MXB Biotech-
nologies, Fuzhou, China), anti-Ki67 (IR626; Dako Products, Santa Clara, CA, USA), and
anti-somatostatin R2 (EP149, Abcam, Massachusetts, MA, USA), together with the Op-
tiview DAB IHC detection and Optiview amplification kits (VENTANA Medical Systems;
Roche Group, Tucson, AZ, USA). Images were taken using digital pathology scanners:
Aperio AT2 (Leica Biosystems, Wetzlar, Germany) and NanoZoomer S360 (Hamamatsu
Photonics, Shizuoka, Japan). Ki67 automated counts were measured in tumor “hotspots”
using QuPath software, version 0.4.0.

4.3. Preparation of a Single-Cell Suspension, 10× Library Preparation and Sequencing

Fresh tumor tissues were mechanically chopped with scalpels on a plate and enzymat-
ically digested with collagenase type IV (Servicebio, Wuhan, Hubei, China) and DNAse I
(Magen, Guangzhou, Guangdong, China). Following digestion, the cell suspension was
subjected to erythrocyte removal using the red blood cell lysis buffer (QuantoBio, Bei-
jing, China). The cell suspension was filtered through a 70 µm strainer (MACS, Bergisch
Gladbach, Germany), and dissociated cells were pelleted and re-suspended in phosphate
buffer saline (PBS) with 0.04% BSA (bovine serum albumin). The Chromium Next GEM
Single Cell 5′ v2 Kit (10× Genomics, Pleasanton, CA, USA) and the Chromium Single Cell
Controller Instrument were used to generate a 10× single-cell library according to the
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manufacturer’s instructions. After the library construction and quality control, sequence
data were generated using SurfSeq 5000, and 377 million reads were obtained.

4.4. Single-Cell Transcriptome Data Preprocessing and Analysis

The raw reads in the fastq format were processed using the Cell Ranger pipeline (ver-
sion 7.1.0) and the retrieved count matrix contained 1376 cells with a median of 1046 genes
and 1716 UMIs detected per cell. Preprocessing and downstream analysis of scRNA-seq
data were performed in RStudio (R version 4.3.3). Quality control included the removal of
cells with inappropriate gene–umi relationships and a low or high number of unique RNA
molecules by gene.vs.molecule.cell.filter, the pagoda2 package [76], high mitochondrial
(>20%) or ribosomal (>20%) RNA content, and droplets, containing multiplets (scrublet
package, version 0.2.3 [77]). The expression profile was corrected for ambient RNA us-
ing DecontX [78] (celda package, version 1.16.1), and cells containing >500 UMIs and
>250 unique genes were retained. Basic steps of downstream data processing including
normalization (LogNormalize), scaling (ScaleData), search for variable features (FindVari-
ableFeatures, nfeatures = 2000), dimensional reduction (RunPCA, RunUMAP, RunTSNE,
dims = 20), clustering (FindClusters, FindNeighbors), and visualization were performed
using standard Seurat package functions. The remaining 954 high-quality cells with a
median of 2081 unique RNA molecules and 1281 unique genes per cell in the final Seu-
rat object were manually annotated by performing differential expression analysis with
FindAllMarkers function (test.use = “roc”) and searching for known cell types’ markers
in PanglaoDB [79] and The Human Protein Atlas proteinatlas.org. Published scRNA-
seq data of four PanNETs [41] was obtained from the Broad Institute Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell (accessed on 20 October 2024)). Normal-
ized and filtered count matrices were processed using basic steps, including the removal
of cells with a low number of unique genes (nFeature_RNA < 500), scaling, search for
variable features (nfeatures = 3000), dimensional reduction (dims = 20), and clustering.
Integration with published data was performed using canonical correlation analysis (CCA)
implemented in Seurat (nfeatures = 3000, dims = 20). Annotation was performed as previ-
ously described using differential expression analysis (FindAllMarkers, test.use = “roc”)
and search for known marker genes.

4.5. Hallmark Signature Scoring

Hallmark gene signatures were obtained from the Molecular Signature Database
implemented in the msigdbr R package (version 7.5.1) [80]. Each cell was assigned a
score using the AddModuleScore function from the Seurat package. The significance of
differences in scores in tumor versus microenvironment cells was evaluated using the
Wilcoxon rank sum test.

4.6. Whole Exome Sequencing and Analysis

WES of tumor and blood samples was prepared with VAHTS Universal Plus DNA
Library Prep Kit for Illumina V2, VAHTS Target Capture Core Exome Panel with VAHTS
Target Capture Hybridization, and Wash Kit were used in hybridization. Prepared libraries
were sequenced with SurfSeq5000.

Raw fastq reads were trimmed with fastp (version 0.23.2) and aligned with BWA (ver-
sion 2.2.1) to the GRCh38 genome. The mean coverage of blood and tumor samples (mos-
depth, version 0.3.3) was 253× and 513×, respectively. DeepVariant (version 1.5.0) was used
for germinal mutation calling from blood samples and EnsembleVEP (version 111.0) was
used for variant annotation. For paired somatic calling, Manta and Strelka (versions 1.6.0
and 2.9.10) were used, and then, only variants with FILTER = PASS were annotated with
EnsembleVEP (version 109.3) and processed with the vcf2maf package (version 1.6.22). All
variants were filtered with the following thresholds: TumorVAF > 0.05, NormalVAF < 0.05,
tumor depth > 20, tumor alt count > 10, and normal depth > 10. Only variants passing
these filters were used for further TMB and mutational signature calculation.

https://singlecell.broadinstitute.org/single_cell
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Mutational signatures were calculated with SignatureProfilerAssignment (version
0.1.8) [81] with default parameters. Cosmic signatures v. 3.4. were used. Fusions were
called with FuSeqWES (version 1.0.0) [82]. CNA was called with sequenza-utils (version
3.0.0) and R package sequenza (version 3.0.0) [83]. Pileups for sequenza were generated
with samtools (version 1.17) in WES-covered regions in positions of variants that have
population AF > 0.05 from dbSNP. GRCh38 genomic annotation was intersected with a
segment file to get gene-level copy numbers.

MSI-scores were calculated with msisensor-pro (version 1.3.0) [84]. HRD-scores were
calculated with the scarHRD package [85].

4.7. scRNA-Seq CNV Analysis

The search for somatic copy number variations and separation between normal and
malignant cells in scRNA-seq data was conducted using Numbat in accordance with the
vignette [86]. The analysis was enhanced by the use of WES bam files on the preprocessing
step (population SNP pileup and phasing).
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Abbreviations

ACTH adrenocorticotropic hormone
AFP alpha-fetoprotein
ALT alternative lengthening of telomeres
ATRX α-thalassemia/mental retardation syndrome X-linked protein
BER base excision repair
BRCA1 breast cancer-associated 1 protein
CA 19-9 cancer antigen 19-9
CCA canonical correlation analysis
CEA carcinoembryonic antigen
CNV copy number variation
COSMIC catalogue of somatic mutations in cancer
DAXX death domain-associated protein
EUS-FNB endoscopic-ultrasound fine-needle biopsy
GSEA gene set enrichment analysis
HR homologous recombination
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HRD-score homologous recombination deficiency score
ICL interstrand crosslink
IHC immunohistochemical
KEGG Kyoto encyclopedia of genes and genomes
LOH loss of heterozygosity
MEN1 multiple endocrine neoplasia type 1 gene
MSI-score microsatellite instability score
MSCT multispiral computed tomography
NGS next-generation sequencing
NECs neuroendocrine carcinomas
NF1 neurofibromatosis type 1 gene
PanNENs pancreatic neuroendocrine neoplasms
PanNETs pancreatic neuroendocrine tumors
SSTR2 somatostatin receptor type 2
scRNA-seq single-cell RNA-sequencing
TCGA The Cancer Genome Atlas
TMB tumor mutational burden
TSC tuberous sclerosis complex gene
UMI unique molecular identifier
VAF variant allele frequency
VHL von Hippel-Lindau syndrome gene
WES whole exome sequencing
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